基于时频模态特征提取的牵引网行波故障定位方法研究

周 欢^{1,2},陈剑云¹

(1. 华东交通大学轨道交通基础设施性能监测与保障国家重点实验室, 江西 南昌 330013;2. 华东交通大学交通运输工程学院, 江西 南昌 330013;)

摘 要:为了解决全并联 AT 牵引网故障点入射波、反射波以及 AT 所反射波等不同成分的行波难以识别,使得故障定位十分困难的问题。本文提出了一种基于自适应投影多元经验模态分解(APIT-MEMD)的波形相似度行波故障定位方法。采用 APIT-MEMD 算法对上下行多导线故障信号进行自适应投影多元模态分解,以提取表征不同成分故障行波的暂态高频特征。通过构建不同成分行波模态分量的互相关函数矩阵,以识别不同路径的行波,并计算相应的互相关函数最大时延,从而实现 牵引网行波故障定位。实验结果表明,基于时频模态特征提取的方法故障定位的误差在 102 m 以内,且平均绝对误差为 49 m,并与多元经验模态分解算法不同投影参数的结果进行对比,有效优化了故障定位精度。优化后的行波故障定位算法满足高精度的故障定位需求。

关键词:牵引网;行波;故障定位;多元经验模态分解。

Research on Traction Network Traveling Wave Fault Location Method Based on Time-Frequency Mode Feature Extraction

Zhou Huan^{1,2}, Chen Jianyun¹

(1. State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China;
 2. School of Transportation and Traffic Engineering, East China Jiaotong University, Nanchang 330013, China)

Abstract: To address the challenge of identifying traveling waves with different components, including fault point incident waves, reflected waves, and waves reflected by AT, which makes fault location on all parallel AT traction networks difficult, this paper proposes a wave similarity-based fault location method using Adaptive Projection Intrinsically Transformed Multivariate Empirical Mode Decomposition (APIT-MEMD). The APIT-MEMD algorithm is applied to adaptively decompose the fault signals of multi-conductor lines in both directions to extract transient high-frequency characteristics representing different components of fault traveling waves. By constructing the cross-correlation function matrix of different wave mode components to identify traveling waves along different paths and calculating the corresponding maximum time delay of the cross-correlation function, the fault location of the traction network's traveling waves is achieved. Experimental results demonstrate that the proposed method, based on time-frequency mode feature extraction, achieves fault location accuracy within 102 m with an average absolute error of 49 m.Compared with the results of different projection parameters in the multi-dimensional empirical mode decomposition algorithm, the effectiveness of fault location accuracy is optimized. The optimized fault location algorithm meets the requirements for high-precision fault location.

Key words: traction network, traveling wave, fault location, memd.

收稿日期: 2023-09-09 基金项目: 国家自然科学基金项目(51467004) 我国高速电气化铁路普遍采用全并联 AT 牵引 供电方式,全并联 AT 牵引供电系统运营里程长、 规模大。其复杂恶劣的环境,导致故障频发。如强 风、冰雪和异物侵限等可能导致短路故障,进而造 成列车运行中断,甚至引发更为严重的安全事故。 因此,准确定位故障位置并及时抢修以恢复供电十 分迫切^[1]。而牵引网的故障定位装置主要是基于阻 抗法^[2-4]和电流比法^[5]故障定位原理,定位精度较 低。

国内外学者在故障定位方面已做出较为全面 的研究。目前,行波法^[6-8]在故障定位研究中得到了 广泛的应用。由于其具有较高的测量精度,行波法 在牵引网故障定位中具有广阔的应用前景。行波法 的故障测距原理主要通过识别反射波波头,从而实 现准确的故障定位^[9]。传统的行波波头特征提取方 法 包 括 经 验 模 态 分 解 (Empirical Mode Decomposition, EMD)^[10]、多元经验模态分解

(Multivariate Empirical Mode Decomposition, MEMD)^[11]、小波模极大值变换^[12]等。文献[13]基 于小波变换模极大值极性的故障测距法需要选择 适当的小波基函数和尺度。由于钢轨电流难以直接 测量, 文献[14]中传统的相模变换难以应用, 因此 基于单路信号分析的小波变换行波故障测距法计 算结果不准确。此外, EMD 和 MEMD 在处理复杂 信号时容易出现模态混叠问题,且缺乏自适应性 [15-16]。全并联 AT 牵引供电系统具有特殊的多导线 结构,其上下行供电线路在固定间隔内并联自耦变 压器(AT)。故障行波在传播过程中发生多路径传播, 导致不同成分的行波在相同时间域内相互叠加,难 以区分,因此增加了故障定位的难度。文献 [16]MEMD 虽然对多元故障信号具有模态对准属 性,但投影方向和噪声对多元模态特征分解性能具 有一定影响。牵引变电所、故障点和 AT 所等不同 阻抗突变点的反射波具有不同的波形相关性,因此 通过比较行波波形的相关性以识别不同路径的行 波波头,即可实现故障定位。而由于高频暂态信号 的周期非常短,且存在多个不同频率、不同相位的 成分叠加,同时受噪声干扰的影响,因此故障信号 的行波特征难以提取。自适应投影多元经验模态分 解 (Adaptive-Projection Intrinsically Transformed Multivariate Empirical Mode Decomposition, APIT-MEMD)可以根据信号的局部特性,自适应地 处理多元故障信号,以提取不同成分的时频模态特征。

为准确识别多路径行波,实现全并联 AT 牵引 网行波故障定位,本文提出了一种基于时频模态特 征提取的牵引网行波故障定位方法。为准确捕捉不 同路径的高频模态特征,本文通过 APIT-MEMD 算 法对多导线故障信号进行多元模态分解,提取不同 成分的行波模态函数。为区分不同路径的行波,论 文通过构建互相关函数矩阵,以识别不同路径的行 波信号。最后,通过计算最大时延,采用时频相结 合的模态特征提取方法,来实现精确的故障定位。 为了验证该方法的有效性,在 ATP 仿真软件中建立 牵引网暂态故障仿真模型,并生成短路故障数据, 作为提供故障数据的来源。随后,在 MATLAB 环 境下实现故障定位算法,对故障数据进行处理、特 征提取和算法实现。实验结果表明,该方法在不同 情况下均表现出良好的性能,对于不同故障参数具 有较强的鲁棒性。

研究适用于特殊的多导线并联结构的全并联 AT 牵引网行波故障定位方法,有助于铁路集团更 有效地处理牵引网线路故障,缩短抢修和停运时 间,提高铁路系统的可靠性和安全性,为铁路运营 提供更快捷、更准确的故障定位解决方案,对充分 发挥铁路综合实力具有重要意义。

1 牵引网的行波波形相似特性

全并联 AT 牵引网等效为上行 T₁, R₁和 F₁, 并 与下行 T₂, R₂和 F₂导线并联连接^[17-19], 全并联 AT 牵引网等效结构如图 1 所示。

图 1 全并联 AT 牵引网等效结构

Fig.1 Equivalent structure of all parallel at traction network

自耦变压器将供电臂分为2段, *L*₁为 TS~AT₁ 段距离, *L*₂为 AT1~SP 段距离。

在牵引变电所出口端的 TS 监测点测量的上行 $T_1 和 F_1$, 与下行 $T_2 和 F_2$ 导线的电流信号如图 2 所

示。鉴于牵引网结构的复杂性,故障行波在上下行 导线传播过程中发生多路径传播,导致不同路径的 故障信号包含了初始行波、故障点反射波以及 AT 所反射波等不同成分。不同路径行波的传播过程和 距离如表1所示。

Fig.2 T1 and F1, T2 and F2 conductor currents of TS

monitoring points

表1 多路径行波

Table 1 Multi-Path Traveling Wave

Path	Drene getien neth	Propagation	
number	Propagation pain	distance	
1	A: $F \rightarrow TS(upstream)$	x	
	B: $F \rightarrow TS(upstream) \rightarrow TS(downstream)$		
	A: $(1)F \rightarrow AT1(downstream) \rightarrow TS(downstream) \rightarrow TS(downstream)$		
2	upstream)	2L ₁ -x	
2	②F→AT1(upstream)→F→TS(upstream)		
	B: $F \rightarrow AT1(downstream) \rightarrow TS(downstream)$		
	$A: \textcircled{1}F \rightarrow TS(upstream) \rightarrow TS(downstream) \rightarrow AT1(do$		
	wnstream) \rightarrow TS(downstream) \rightarrow TS(upstream)		
	$\textcircled{2}F \rightarrow AT1(downstream) \rightarrow TS(downstream) \rightarrow TS(up$		
2	stream)→F→TS(upstream)	27.	
3	$B: \widehat{1}F \rightarrow TS(upstream) \rightarrow TS(downstream) \rightarrow AT1(do$	$2L_1+x$	
	wnstream)→TS(downstream)		
	②F→AT1(upstream)→F→TS(upstream)→F→TSu		
	pstream)→TS(downstream)		
	$A: (1)F \rightarrow TS(upstream) \rightarrow TS(downstream) \rightarrow AT1(do$		
	wnstream) \rightarrow TS(downstream) \rightarrow TS(upstream) \rightarrow F \rightarrow		
	TS(upstream)		
4	$@F \rightarrow AT1(upstream) \rightarrow F \rightarrow TS(upstream) \rightarrow $		
	pstream) \rightarrow F \rightarrow TS(upstream)	2 <i>L</i> ₁ +3 <i>x</i>	
	$B: \textcircled{1}F \rightarrow TS(upstream) \rightarrow TS(downstream) \rightarrow AT1(do$		
	wnstream) \rightarrow TS(downstream) \rightarrow TS(upstream) \rightarrow F \rightarrow		
	TS(upstream)→TS(downstream)		
	$@F \rightarrow AT1(downstream) \rightarrow TS(downstream) \rightarrow TS(up$		
	stream) \rightarrow F \rightarrow TS(upstream)		
	$③$ F \rightarrow AT1(upstream) \rightarrow F \rightarrow TS(upstream) \rightarrow F \rightarrow TS(u		
	pstream) \rightarrow F \rightarrow TS(upstream) \rightarrow TS(downstream)		
5	$F \rightarrow AT1 \rightarrow F \rightarrow AT1 (downstream) \rightarrow TS (downstream)$	$4L_1$ - $3x$	
6	F→TS→F→TS	3 <i>x</i>	

由表1可见,不同路径的行波在时间域内存在 重叠,因此识别不同成分的行波十分困难。由于不 同成分之间的波形相似性存在差异,因此通过采用 特征提取的方法可以识别不同路径的故障行波。 特征提取的方法可以有效捕捉不同成分之间 的波形特征,通过对这些特征进行分析,可以更容 易地区分和识别不同成分的故障行波,从而提高故 障检测和分析的准确性和可靠性。

互相关函数描述了两个信号之间在不同时间 点或空间位置的相似程度,两个信号*L_i(t)*和*L_i(t)*

的离散时间互相关函数 R_{xx} [n]可以表示为:

$$R_{ij}\left[n\right] = \sum_{k=n1}^{k=n^2} L_i\left[k\right] \cdot L_j\left[k-n\right]$$
(1)

其中, R_w[n]表示在离散时间 n 处的互相关值。

 $L_i(k)$ 和 $L_j(k)$ 分别表示信号 $L_i(t)$ 和 $L_j(t)$ 在离散时间点 k 处的取值。

2 基于APIT-MEMD的波形相似度故

障定位方法

2.1 基于 APIT-MEMD 的故障行波特征提取

自适应投影多元经验模态分解是一种用于处 理带有噪声的暂态故障多元信号,其主要目的是提 取暂态故障行波的波形特征。

APIT-MEMD 算法包含两个主要步骤:预处理和分解。预处理阶段主要包括对原始信号的平滑处理以及噪声估计。分解阶段分为两个步骤:首先,将每个信号应用 MEMD 算法,将其分解成一组固有模态函数(IMF)和一个残余信号。并采用自适应修正方法,通过利用己提取的 IMF 和残余信号来估计和去除残余噪声。

APIT-MEMD 方法通过自适应投影技术,将每 个 IMF 投影到高维空间中进行处理,从而增强了 IMF 分离效果。在自适应修正步骤中,通过估计残 余信号中的噪声,自适应地调整每个 IMF,以更好 地逼近原始信号。对每个信号应用 APIT-MEMD, 提取信号的各个 IMF 分量和残差项。算法原理如 下:

(1) 给定一个 n 变量信号 s(t),并对其协方差矩阵 *C* 进行特征分解, $C = \Sigma \Lambda \Sigma^{T}$, Σ 表示特征矢量矩阵, Λ 表示特征值矩阵。最大的特征值 λ_{1} 对应于特征向 量 Σ_{1} ,它是第一主成分。 (2) 沿着 Σ_{l} 的相反方向构建另一个矢量 Σ_{l} ,即构建一个方向与 λ_{l} 对应的特征向量 Σ_{l} 截然相反的矢量。

(3)使用 Hammerseley 序列,对一个(n-1)球体进 行均匀采样,得到 K 个方向的均匀的投影向量

 $\left\{x^{\theta_k}\right\}_{k=1}^k$, 然后计算每个方向向量与 Σ_1 的欧几里得距离。

(4) 使用
$$x_{\Sigma_1}^{\wedge^{\theta_k}} = \frac{x_{\Sigma_1}^{\theta_k} + \alpha \Sigma_1}{\left|x_{\Sigma_1}^{\theta_k} + \alpha \Sigma_1\right|}$$
 重新定位一半的均匀

投影向量 $x_{\Sigma_1}^{\theta_t}$, 它们靠近 Σ_1 。使用

$$\sum_{k=0}^{n-\theta_{k}} = \frac{x_{\sum_{0}}^{\theta_{k}} + \alpha \sum_{0}}{\left| x_{\sum_{0}}^{\theta_{k}} + \alpha \sum_{0} \right|} \times \mathbb{I} \oplus \mathbb{I} \oplus \mathbb{I} \oplus \mathbb{I} \oplus \mathbb{I},$$

靠近 Σ_{u} ,被重新定位的向量的密度由 α 控制。

(5)使用自适应方向向量
$$x_{\Sigma_1}^{\theta_k} = \frac{x_{\Sigma_1}^{\theta_k} + \alpha \Sigma_1}{\left|x_{\Sigma_1}^{\theta_k} + \alpha \Sigma_1\right|}$$
及
 $\int_{x_{\Sigma_1}}^{\theta_k} = \frac{x_{\Sigma_1}^{\theta_k} + \alpha \Sigma_{01}}{\sum_{x_1}}$ 进行高维空间局部均值 m(t)

 $x_{\sum_{01}}^{\theta_k} + \alpha \sum_{01}$

的估计。

300

200

100

0

0

error/m

(6) 通过 APIT-MEMD 的分解,多通道量测信号 *s*(*t*)被分解成了一系列 IMF 矩阵和一个残差项 *r*(*t*) 的组合。

APIT-MEMD 能够自适应地确定投影方向,以 更好地分解多元故障信号并提取其本征模态函数 ^[20]。该方法的核心思想在于利用协方差矩阵的特征 分解和自适应投影来优化信号的分解过程,以更准 确地反映故障信号中的行波特征。通过这一分解方 式,APIT-MEMD 可以将原始多通道信号分解成一 组 IMF 矩阵,每个 IMF 矩阵都对应着不同故障距 离。这使得信号的分析和特征提取变得更加灵活和 有效,因为不同的 IMF 矩阵可以用来描述信号中的 不同故障行波特征。基于 APIT-MEMD 分解的多元 模态分量如图 3 所示,这些模态分量分别提取了不 同频率的行波成分。通过计算这些模态分量与原始 信号的相关系数,可以确定相关系数最大的模态分 量波形结构,如图 4 所示。由图中可见,模态分量 波形展示了多个不同成分的振荡序列,每个序列对 应着不同故障行波的特征结构。

而对于暂态故障不平衡数据而言,功率不平衡 会导致次优性能,同时,多元模态分解的不同投影 方向数 v 对故障定位误差也有一定的影响,为了验 证功率不平衡与投影方向数对故障定位精度的影 响,不同投影方向数量的模态分量故障定位误差曲 线如图 3 所示。

Fig. 3 Fault localization error curves of mode components with different projection directions

图 3 中的(a),(b)分别代表原始多变量阵列以及 下行非故障线 2 倍系数阵列。由图可见,原始多变 量阵列的误差最小,效果最好。图(a)中,当 v=512 时,故障定位误差最小。图(b)中,当 v=2048 时, 故障定位误差最小。因此,投影方向很难确定最优 值。为了解决这一问题,通过在多元模态分解中引 入自适应投影,使得故障定位精度达到最优值。

通过 APIT-MEMD 计算分解后的时频模态分量,基于 APIT-MEMD 分解的多元模态分量如图 4 所示。多元模态分量存在关键的突变点局部模极大

值,模态分量波形图如图5所示,模态分量局部模极大值如图6所示。这些模极大值点标志着不同行 波成分的临界位置。通过捕捉故障行波中的局部模 极大值,为后续分析提供重要的特征。通过局部模 极大值设置前后采样点数*M*,截取出的行波序列波

形L(t)如图7所示。

Fig.4 Multiple mode components based on APIT-MEMD decomposition

图 5 模态分量波形图

Fig.5 Mode component waveform

图 7 故障行波截取序列波形

Fig.7 Fault traveling wave intercept sequence waveform

计算突变点模极大值附近的行波波形的互相 关函数矩阵。利用行波波形的互相关函数矩阵值比 较不同不同路径的行波相关性。通过比较,可以区 分不同路径的行波,进而实现精确的故障定位。

2.2 基于行波互相关函数故障定位

第一个行波序列为路径 1,路径 2 与路径 1 的 互相关系数最小,因此,可以识别路径 1 与路径 2 行波。

假设路径1的行波波头与路径2行波波头互相 关最大时延为*n*,因此,可以推导出故障距离*x*为:

$$x = L_1 - \frac{nv}{2} \tag{2}$$

其中, v为行波波速。

故障行波互相关函数波形图如图 8 所示。通过 计算最大互相关系数,构建不同故障行波序列的互 相关系数矩阵,不同故障行波序列最大互相关系数 矩阵值如图 9 所示。不同故障行波序列最大互相关 函数三维图如图 10 所示。

图 8 故障行波互相关函数

Fig.8 Fault traveling wave cross-correlation function

图 9 不同故障行波序列最大互相关函数值

Fig.9 Maximum cross-correlation function values for different faulty traveling wave sequences

Fig.10 Three-dimensional figure of the maximum

cross-correlation function of traveling wave sequences with

different faults

最后,计算路径1与路径2的最大时延n来确 定故障的位置。该方法通过提取时频模态特征,实 现牵引网行波故障定位。

2.3 故障定位流程图

牵引网行波故障定位方法的流程图如图 11 所示。对上行接触线 T₁和馈线 F₁的电流 i_{T1} 和 i_{F1} ,下行接触线 T₂和馈线 F₂的电流 i_{T2} 和 i_{F2} 进行测量。 然后,构建输入电流矩阵 $/=(i_{T1} i_{F1} i_{T2} i_{F2})$ 。并 对其进行 APIT-MEMD 分解,提取多元模态分量, 并计算互相关函数矩阵,通过互相关最大时延,根 据故障定位公式,计算故障距离。

Fig.11 Traction network fault localization flow chart

3 故障定位结果分析与讨论

短路故障仿真模型基于 ATP-EMTP 搭建,牵引 网全长 30 公里,中间设置 1 个 AT,将供电臂分为 2 段,各为 15km,故障区段为第 1 段,第 2 段。在 变电所出口处(TS 端)设置上下行线路的电流测量 点,采样频率为 10MHz。短路故障类型分别为接触 线与钢轨短路(T-R),正馈线与钢轨短路(F-R) 和接触线与正馈线短路(T-F);过渡阻抗分别为 1 Ω、10Ω;故障角均分别为 6,17,30,49 和 90 度。

为了实现精确故障定位,采用 APIT-MEMD 波 形相似度的牵引网故障定位方法对 TS 端测量点上 行 T₁和 F₁,与下行 T₂和 F₂导线的多元电流信号进 行计算。对多元信号添加 20dB 高斯白噪声的情况 下,所得模态分量局部模极大值如图 12 所示,不 同故障行波序列最大互相关函数值如图 13 所示。

图 12 模态分量局部模极大值

图 13 不同故障行波序列最大互相关函数值

Fig.13 Maximum cross-correlation function values for different faulty traveling wave sequences

由图 13 可见,序列 4 的互相关函数值最小,因 此序列 1 和序列 4 对应路径 1 和路径 2 行波波头。 根据故障测距公式,计算可得故障定位结果见表 2。

表 2	故障定位结果
-----	--------

		1ab.2	Fault locatio	n result		
Fault	T-R	ł	T-I	7	F-R	ł
distance/ km	Measured distance/km	Error/m	Measured distance/km	Error/m	Measured distance/km	Error/m
1	1.003	3	1.013	13	1.007	7
5	5.043	43	5.052	52	5.050	50
10	10.053	53	10.016	16	10.015	15
14	13.968	32	13.952	48	14.078	78
16	16.035	35	16.025	25	16.011	11
20	20.92	92	20.102	102	20.075	75
25	25.075	75	25.034	34	25.027	27
29	29.075	75	29.014	14	29.034	34

在表 2 中,实验结果表明,对于不同的故障电 阻、故障起始角度和故障类型,实际测距误差的最 大值不超过 102 m。

比,不同算法的故障定位精度见表 3.

	表 3	不同算法测距精度
--	-----	----------

Tab. 3	Fault locat	tion accurac	y of differei	nt algorithms
Al	gorithm	T-R	T-F	F-R
Ν	1EMD	95	108	117
API	I-MEMD	49	53	55
	EMD	130	136	149

结果表明本文所提方法故障定位精度优于其它定位方法。

4 结论

由于全并联 AT 牵引网故障行波发生多路径传播,使得不同行波成分在时间域内相互叠加难以区分,从而导致故障定位十分困难。针对这一问题, 通过采用基于 APIT-MEMD 时频模态特征提取的算法,准确识别多路径行波,从而实现全并联 AT 牵引网行波故障定位。所得结论如下:

针对不同成分行波特征难以提取,导致故障定位十分困难的问题,采用 APIT-MEMD 算法对多导线故障信号进行多元模态分解,能够有效提取不同路径的高频模态函数特征。

2) 为识别不同路径的行波,通过分析多元模态高频行波特征,采用波形相似度方法计算互相关函数,能够有效识别不同路径的行波成分。通过计算最大时延,采用时频相结合的模态特征提取方法,实现准确的故障定位。考虑不同过渡电阻、初始相位角等条件变化的情况下,实际测距误差的最大值未超过95m。

3) 该方法采用时频模态特征提取的行波故 障定位算法,无需捕捉行波波头,不受行波波头奇 异性影响。与传统方法 MEMD 和 EMD 方法相比, 采用自适应投影,不受投影方向影响,有效提高了 故障定位精度。该方法具有较高的准确性和鲁棒 性。

参考文献

- SABER A,ZEINELDIN H H,EL-FOULY T H M,et al. A new fault location scheme for parallel transmission lines using one-terminal data[J].International Journal of Electrical Power & Energy Systems, 2022,135: 107548.
- [2] AN J, ZHUANG C, RACHIDI F, et al. An Effective EMTR-Based High-Impedance Fault Location Method for Transmission Lines[J].IEEE Transactions on Electromagnetic Compatibility,

2021,63(95): 268-276.

- [3] HUH, PANP, SONGY, et al. A Novel Controlled Frequency Band Impedance Measurement Approach for Single-phase Railway Traction Power System[J].IEEE Transactions on Industrial Electronics, 2019,61(1):244-253.
- [4] PAN P Y, HU H T, YANG X W, et al. Impedance Measurement of Traction Network and Electric Train for Stability Analysis in High-Speed Railways[J]. IEEE Transactions on Power Electronics,2018,33(12):10086-10100.
- [5] 于国旺.利用机车负荷电流校验 AT 吸上电流比测距精 度[J].铁道工程学报,2014,31(07):95-98.
 YU G W. Verification of AT Absorption Current Ratio

Measurement Accuracy Using Locomotive Load Current[J]. Journal of Railway Engineering Society, 2014, 31(07): 95-98.

- [6] NAIDU O D, PRADHAN A K. Precise Traveling Wave-Based Transmission Line Fault Location Method Using Single-Ended Data[J]. IEEE Transactions on Industrial Informatics, 2021,17(8):5197-5207.
- [7] JIMENEZ H A, GUILLEN D, TAPIA R,et al.An improved algorithm for fault detection and location in multi-terminal transmission lines based on wavelet correlation modes[J].Electric Power Systems Research, 2021,192(56):953-663.
- [8] PARSI M, CROSSLEY P, DRAGOTTI P L, et al. Wavelet based fault location on power transmission lines using real-world travelling wave data[J]. Electric Power Systems Research,2020,186(756):6261-6273.
- [9] CHEN J, CHU E, LI Y, et al..Faulty Feeder Identification and Fault Area Localization in Resonant Grounding System Based on Wavelet Packet and Bayesian Classifier[J].Journal of Modern Power Systems and Clean Energy, 2020,8(64):760-767.
- [10] WANG D, HOU M Q. Travelling wave fault location algorithm for LCC-MMC-MTDC hybrid transmission system based on Hilbert-Huang transform[J]. International Journal of Electrical Power & Energy Systems, 2020, 121:106125.
- [11] Rehman N U, Mandic D P. Filter Bank Property of Multivariate Empirical Mode Decomposition[J].IEEE Transactions on Signal Processing, 2011, 59(5):2421-2426.
- [12] 傅钦翠,陈剑云,钟汉华,等. 全并联 AT 牵引网行波 传播特性研究及单端故障测距算法 [J], 2021, 铁道 学报, 43(07): 66-76.

FU Q C, CHEN J Y, ZHONG H H, et al. Study on Traveling Wave Propagation Characteristics of Fully Parallel AT Traction Network and Single-End Fault Distance Measurement Algorithm[J]. Journal of the China Railway Society, 2021, 43(07): 66-76.

[13] 陶彩霞,杜雪,高锋阳,等.基于经验小波变换的混合输电
 线路单相接地故障测距[J].电力系统保护与控制,2021,49(10):105-112.

TAO C X, DU X, GAO F Y, et al. Single-Phase-to-Ground Fault Distance Measurement for Hybrid Transmission Lines Based on Empirical Wavelet Transform[J]. Power System Protection and Control, 2021, 49(10): 105-112.

[14] 舒新星,陈剑云,华敏等.基于时频谱相似度全并联 AT 牵 引网行波测距方法[J].铁道学报,2022,44(06):37-45.

SHU X X, CHEN J Y, HUA M, et al. Time-Frequency Spectrum Similarity-Based All Parallel AT Traction Network Traveling Wave Distance Measurement Method[J]. Journal of the China Railway Society, 2022, 44(06): 37-45.

- [15] THIRUMALAISAMY, M R,ANSELL P J.Fast and Adaptive Empirical Mode Decomposition for Multidimensional, Multivariate Signals [J].IEEE Transactions on Signal Processing, 2018,25(10);1550-1554.
- [16] ALI K,OUAHAB A B,Patrick F, et al. On the Behavior of MEMD in Presence of Multivariate Fractional Gaussian Noise[J]. IEEE Transactions on signal processing,2021,69:2676-2688.
- [17] 彭涛,陈剑云.基于管状导体模型钢轨高频频变参数

作者简介:

周欢(1993),女,博士研究生在读,研究 方向为牵引供电系统行波故障定位等, E-mail: jemiya_zhouhuan@163.com

周欢

陈剑云(1962), 男, 教授, 博士生导师, 研究方向为牵引供电系统行波故障定位 等, E-mail: tiger984@163.com 计算 [J]. 铁道学报, 2019, 41(8):45-49. PENG T,CHEN J Y. Calculation of High-Frequency Variable Parameters of Rail Based on Tubular Conductor Model [J]. Journal of the China Railway Society, 2019, 41(8): 45-49.

- [18] 戴攀, 刘田, 周浩. 高速铁路接触网行波传播特性研究
 [J]. 铁道学报, 2014(02): 25-30.
 DAI P, LIU T, ZHOU H. Research on the Traveling Wave Propagation Characteristics of High-Speed Railway Overhead Contact Lines[J]. Journal of the China Railway Society, 2014(02): 25-30.
- [19] 中华人民共和国铁道部. TB/T 2888—2010 电气化铁路自耦变压器 [S].北京:中国铁道出版社,2010.
 Ministry of Railways of the People's Republic of China. TB/T 2888 2010 Self-Coupling Transformer for Electrified Railways[S]..Beijing: China Railway Publishing House, 2010.
- [20] 张艳军,殷祥翔,葛延峰等基于 APIT-MEMD 的电力系统低频 振荡模式辨识新方法[J]. 电力系统保护与控 制,2020,48(14):165-174.

ZHANG Y J, YIN X X, GE Y F, et al. A New Method for Identifying Low-Frequency Oscillation Modes in Power Systems Based on APIT-MEMD[J]. Power System Protection and Control, 2020, 48(14): 165-174.