文章编号:1005-0523(2012)04-0064-05

关于圈 C_n 的 IC -着色和 IC -指数

周 娟1,谢承旺1,徐保根2,黄占伟3

(华东交通大学1. 软件学院; 2. 基础学院, 江西 南昌 330013; 3. 江西省宜春市科学技术情报所, 江西 宜春 336000)

关键词: IC-着色; IC-指数;连通图;圈

中图分类号:0157.5

文献标志码:A

1 基本概念

定义1 设 G = (V, E) 是一个图, N 是正整数集。 $V = \{v_1, v_2, ..., v_n\}$, f 是定义在V 上的,取值在N 的函数,若对于任意两个相连的点 v_i 和 v_j , $f(v_i)$ 不等于 $f(v_i)$,则称 f 是 G 的一个着色。[1]

定义 2 设 G=(V,E) 是一个图,对于图 G 的一个着色 f 和 G 的一个子图 H ,则记 $f(H)=\sum f(v),v\in V(H)$ 。如果对于每一个整数 k,($1\leq k\leq f(G)$),存在 G 的一个连通子图 H 使得 f(H)=k,则称 f 为图 G 的一个 IC-着色 (IC-coloring)。图 G 的 IC-指数 (IC-indices)定义为 $M(G)=\max\{f(G)|f$ 为图G的一个IC-着色} 并且称适合 f(G)=M(G) 的 IC-着色,f 为图 G 的一个极大 IC-着色。

由定义易见,一个图 G 存在 IC-着色 当且仅当 G 为连通图。

- 一般地说,确定一个图的 IC-指数 是困难的,由文献[2-9]已知指数的图:完全图 K_n ,星 ST_n ,完全二部图 K_{mn} ,圈 C_n ,路 P_n , K_n -e表示减掉一条边的完全图,如下。
 - $(1)^{[6]}M(Kn)=2^n-1$; K_n 的最大着色: $(1,2,4,8,...,2^{n-1})$ 。
 - 2)^[6] $M(K_3-e)=6$; $M(K_n-e)=2^n-3$, $n \ge 4$
 - 3)^[5] $M(K_{m:n}) = 3 \times 2^{m+n-2} 2^{m-2} + 2$, $2 \le m \le n$

 K_{mn} 的最大着色: x_i 是 K_m 的着色, y_i 是 K_n 的着色

$$x_1 = 1, x_2 = 2, y_1 = 3$$

 $y_i = 2y_{i-1}, 2 \le i \le n-1$
 $y_n = 2y_{n-1} + 1$
 $x_i = x_1 + x_2 + \dots + x_{i-1} + y_1 + y_2 + \dots + y_n - 2, 3 \le i \le m$

例1 $K_{3,4}$ 和 $K_{4,5}$ 的最大着色,如图1。

收稿日期:2012-02-01

基金项目: 国家自然科学基金项目(11061014); 江西省自然科学基金项目(20114BAB201027, 2010GZS0031, 20114BAB201025); 江西省教育厅科技项目(GJJ12307); 江西省科技支撑计划项目(20112BBE50026) 作者简介: 周娟(1977-), 女, 讲师, 硕士, 研究方向为算法设计与分析、图论。

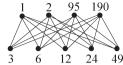


图 1 $K_{3,4}$ 和 $K_{4,5}$ 的最大 IC- 着色 Fig.1 Max IC-coloring of $K_{3,4}$ and $K_{4,5}$

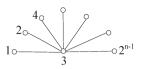


图 2 ST_n的最大IC-着色 Fig.2 Max IC-coloring of ST_n

- $4)^{[2]} M(ST_n) = 2^n + 2, 2 \le n_0$
- **例2** ST_n 的最大 IC-着色如图2, $(3,1,2,4,8,...,2^{n-1})$, 中心点着色为3。
- $(5)^{[6]}$ $3 \le n \le 9$, $n \ne 7$, $M(C_n) = n(n-1) + 1_0$
- C_4 的两个最大着色:(1,2,6,4),(1,3,2,7)
- C₅的最大着色:(1,3,10,2,5)
- *C*₆的最大着色:(1,2,7,4,12,5)
- 以下是本文提供的:
- C_8 的最大着色:(1,2,10,19,4,7,9,5)
- (1,3,5,11,2,12,17,6)
- (1,3,8,2,16,7,15,5)
- (1,4,2,10,18,3,11,8)
- (1,4,22,7,3,6,2,12)
- (1,6,12,4,21,3,2,8)
- *C*。的最大着色:(1,2,4,8,16,5,18,9,10)
- (1,4,7,6,3,28,2,8,14)
- (1,6,4,24,13,3,2,12,8)
- 对于其他类型的某些图,只知其界
- 6)^[2] $(n+1)n \ge M(P_n) \ge (2+\frac{n}{2})(n-\frac{n}{2})+\frac{n}{2}-1$
- $7^{[4,7]}$ 对任意连通图 G 和 H ,均有 $M(G+H) \ge (M(G)+1)(M(H)+1)-1$
- 8) $^{[4,7]}$ 设 $n(n\geq 2)$ 个整数 $b_i(i=1,\ 2,\ \cdots,n)$ 适合 $b_1\geq b_2\geq b_3\geq \cdots \geq b_n\geq 2$,则有 $M(ST(n;b_1,b_2,\cdots b_n))\geq 2b_1+\sum (b_{i+1}-1)b_n^i,\ 1\leq i\leq n$
 - 9)^[2] $(n+1)\frac{n}{2} \le M(C_n) \le n(n-1)+1$

2 圈 C, 的 IC -指数的几个结果

根据前面的(5),目前已知:当 $3 \le n \le 9$, $n \ne 7$,圈 C_n 的 IC-指数 $M(C_n) = n(n-1) + 1$;它的着色无规律,对更大的 n 要确定 IC-指数是困难的。利用计算机对圈进行着色。得到了:当 n = 10,11,12,14 时 C_n 的 IC-指数。设 $V = \{v_1, v_2, \cdots, v_n\}$ 是圈 C_n 的顶点集且 $v_i v_{i+1}$, $v_n v_1$,是 C_n 的边, $1 \le i \le n-1$ 。将边 $v_n v_1$ 切掉就得到 v_1 为端点的 n 个点的路。把 v_1 称为左端点,以 v_1 为左端点的连通真子图有 n-1 个:1 个点的连通子图 v_1 ,2 个点的连通子图 $v_1 v_2$,…,n-1 个点的连通子图 $v_1 v_2$,…, v_{n-1} 。以每个点为左端点的连通真子图都有 n-1 个,因此 C_n 共有 n(n-1)+1 个连通子图。

定理 当
$$n = 10, 12, 14$$
 时 C_n 的 IC - 指数 $M(C_n) = n(n-1) + 1;$ $n = 11$ 时, $M(C_n) = 95$

```
证明 1) n=10 , x_i=f(v_i) , (x_1,x_2,\ldots,x_n)=(1,2,6,18,22,7,5,16,4,10) 是 C_n 的一个着色,下面给出以 v_i 为左端点的 9个连通子图的着色,1 \le i \le 10 : v_1:1,3,9,27,49,56,61,77,81 。 v_2:2,8,26,48,55,60,76,80,90 。
```

 $v_3:6,24,46,53,58,74,78,88,89_{\circ}$ $v_4:18,40,47,52,68,72,82,83,85_{\circ}$

 $v_5: 22, 29, 34, 50, 54, 64, 65, 67, 73_{\odot}$

 $v_6:7,12,28,32,42,43,45,51,69_{\circ}$

 $v_7:5,21,25,35,36,38,44,62,84_{\circ}$

 $v_8:16,20,30,31,33,39,57,79,86_{\circ}$

 $v_9:4,14,15,17,23,41,63,70,75_{\circ}$

 $v_{10}: 10, 11, 13, 19, 37, 59, 66, 71, 87_{\odot}$

以上 90 个数遍历[1,90], $f(C_n)$ =91,即对任意 $j(1 \le j \le f(C_n)$ =91),都存在 G 的连通子图 H 使得 j=f(H)。因此(1,2,6,18,22,7,5,16,4,10)是 C_n 的一个最大着色, $M(C_n)$ =n(n-1)+1=91。

2) n=12, (1,2,9,8,14,4,43,7,6,10,5,24) 是 C_n 的一个最大着色。以下 132 个数遍历 [1,132]:

 $v_1:1,3,12,20,34,38,81,88,94,104,109_{\circ}$

 v_2 :2,11,19,33,37,80,87,93,103,108,132 $_{\circ}$

 $v_3:9,17,31,35,78,85,91,101,106,130,131_{\odot}$

 $v_4:8,22,26,69,76,82,92,97,121,122,124_{\circ}$

 $v_5: 14, 18, 61, 68, 74, 84, 89, 113, 114, 116, 125_{\circ}$

 $v_6:4,47,54,60,70,75,99,100,102,111,119_{\odot}$

 $v_7:43,50,56,66,71,95,96,98,107,115,129_{\circ}$

 $v_8:7,13,23,28,52,53,55,64,72,86,90_{\circ}$

 v_9 :6,16,21,45,46,48,57,65,79,83,126 $_{\circ}$

 $v_{10}: 10, 15, 39, 40, 42, 51, 59, 73, 77, 120, 127_{\circ}$

 $v_{11}:5,29,30,32,41,49,63,67,110,117,123_{\circ}$

 $v_{12}: 24,25,27,36,44,58,62,105,112,118,128_{\circ}$

3) n=14, (1,2,13,7,5,14,34,6,4,33,18,17,21,8)是 C_n 的一个最大着色。以下 182个数遍历[1,182]:

 $v_1:1,3,16,23,28,42,76,82,86,119,137,154,175_{\circ}$

 $v_2: 2, 15, 22, 27, 41, 75, 81, 85, 118, 136, 153, 174, 182_{\circ}$

 $v_3:13,20,25,39,73,79,83,116,134,151,172,180,181_{\odot}$

 v_4 : 7, 12, 26, 60, 66, 70, 103, 121, 138, 159, 167, 168, 170 $_{\circ}$

 v_5 : 5, 19, 53, 59, 63, 96, 114, 131, 152, 160, 161, 163, 176 $_{\circ}$

 $v_6: 14,48,54,58,91,109,126,147,155,156,158,171,178_{\odot}$

 $v_7: 34, 40, 44, 77, 95, 112, 133, 141, 142, 144, 157, 164, 169_{\circ}$

 v_8 : 6, 10, 43, 61, 78, 99, 107, 108, 110, 123, 130, 135, 149 $_{\circ}$

 $v_9:4,37,55,72,93,101,102,104,117,124,129,143,177_{\odot}$

 $v_{10}: 33,51,68,89,97,98,100,113,120,125,139,173,179_{\circ}$

 $v_{11}:18,35,56,64,65,67,80,87,92,106,140,146,150_{\circ}$

 $v_{12}:17,38,46,47,49,62,69,74,88,122,128,132,165_{\circ}$

 v_{13} : 21, 29, 30, 32, 45, 52, 57, 71, 105, 111, 115, 148, 166 $_{\circ}$

 $v_{14}:8,9,11,24,31,36,50,84,90,94,127,145,162_{\circ}$

4) n=11, (1,2,4,9,3,22,5,21,11,10,7)是 C_n 的一个最大着色。 $M(C_n)=95$ 。以下 110 个数遍历 $\lceil 1,94 \rceil$:

 $v_1:1,3,7,16,19,41,46,67,78,88_{\circ}$

 $v_2: 2,6,15,18,40,45,66,77,87,94_{\odot}$

 $v_3:4,13,16,38,43,64,75,85,92,93_{\odot}$

 $v_4:9,12,34,39,60,71,81,88,89,91_{\odot}$

 $v_5:3,25,30,51,62,72,79,80,82,86_{\circ}$

 $v_6: 22, 27, 48, 59, 69, 76, 77, 79, 83, 92_{\circ}$

 $v_7:5,26,37,47,54,55,57,61,70,73_{\circ}$

 $v_8:21,32,42,49,50,52,56,65,68,90_{\circ}$

 v_0 : 11, 21, 28, 29, 31, 35, 44, 47, 69, 74 $_{\circ}$

 $v_{10}: 10, 17, 18, 20, 24, 33, 36, 58, 63, 84_{\circ}$

 v_{11} : 7,8,10,14,23,26,48,53,74,85 $_{\circ}$

要确定 C_n 的 IC指数 为 n(n-1)+1,就是要找 n 个正整数 x_1, x_2, \dots, x_n ,使得 x_1, x_2, \dots, x_n ; $x_1+x_2, x_2+x_3, \dots, x_n+x_1$; $x_1+x_2+x_3, x_2+x_3+x_4, \dots, x_n+x_2+x_1$; $x_1+x_2+x_3+x_4$, $x_2+x_3+x_4+x_5$, \dots ; $x_1+x_2+\dots+x_{n-1}+x_n$ 。这 n(n-1)+1 个数恰好就是 $1,2,3,\dots,n(n-1)+1$ 。

设 x_1, x_2, \dots, x_n 为 C_n 的一个着色,使得其 C_n 的 IC指数 为 n(n-1)+1。

性质1 x_1, x_2, \cdots, x_n 是 n 个不同的正整数,且其中有一个为1,有一个为2, $x_1 + x_2 + \cdots + x_n = n(n-1) + 1$ 。根据对称性,可设 $x_1 = 1, x_2 < x_n$ 。

例 对 C_6 , n(n-1)+1=31,找到6个数1,2,5,4,6,13,相邻2数之和:3,7,9,10,19,14;相邻3数之和:8,11,15,23,20,16;相邻4数之和12,17,28,24,22,21;以上这些数中,从1至15这15个数都出现了。1个数是1,那么31-1=30,就是另外5个数之和,因此1至31都恰好出现了。

性质2 $\max\{x_1, x_2, \dots, x_n\} \le n(n-1)/2 + 1$

性质3 $\{x_1, x_2, \dots, x_n\}$ 中最大的2个数之和小于n(n-1)/2+1+n-1=n(n+1)/2

例 对 C_6 , $\max\{x_1,x_2,\cdots,x_n\}$ \leq 16。 如果某 x_i = 16,则其余 5个数只能是最小的 5个数 1,2,3,4,5。 如最大 2 数之和为 21,则其余 4 数是 1,2,3,4。性质 3 亦可如此计算出: $n(n-1)+1-\sum_{i=1}^{n-2}i=n(n+1)/2$

根据以上性质,可以得出枚举算法,在区间 $[2, x_{max}]$ 里筛选出 n-1 个不同的数,使得 x_1, x_2, \cdots, x_n 是一个新的着色。其计算量小于 $\frac{x_{max}!}{(n-1)!}$,其中 $x_{max} = \max\{x_1, x_2, \cdots, x_n\}$ 。

参考文献:

- [1] BONDY JA, MURTY US R. Graph theory with applications M. Amsterdam; Elsevier Science Publishing Co., Inc, 1976;
- [2] SALEHI E, SIN-MIN LEE, KHATIRINEJAD M S. IC-colorings and IC-indices of graphs [J]. Discrete Mathematics, 2005,
- [3] GALLIAN J A. A survey; recent results, conjectures and open problems in labeling graphs [J]. Journal of Graph Theory, 1989, 13(9): 29-37.
- [4] 徐保根. 关于图的 Grundy 着色[J]. 华东交通大学学报, 2010, 27(1): 78-81.
- [5] SHIUE C L, FU H L. The IC-indices of complete bipartite graphs [J]. The Electronic Journal of Combinatorics, 2008, 15(3): 1-13.
- [6] PENRICE S G. Some new graph labeling problems: A preliminary report [J]. DIMACS Technical Reports, 1995, 95(7): 1-9.
- [7] 徐保根. 图的控制理论[M]. 北京:科学出版社,2006:33-37.
- [8] 徐保根,周尚超. 图与补图的符号圈控制数[J]. 江西师范大学学报:自然科学版,2006,30(3):249-251.
- [9] 徐保根, 张亚琼, 罗茜, 等. 图的反符号全控制数[J]. 华东交通大学学报, 2012, 29(1): 35-38.

IC-Colorings and IC-Indices of Cycles

Zhou Juan¹, Xie Chengwang¹, Xu Baogen², Huang Zhanwei³

(1. School of Software Engineering; 2. School of Basic science, East China Jiaotong University, Nanchang 330013, China; 3. Yichun Science and Technology Information Institue, Yichun 336000, China)

Abstract: Providing a coloring $f:V(G) \to N$ of graph G and any subgraph H of G we define $f(H) = \sum f(v), v \in V(H)$. The coloring f is called an IC-coloring if for any integer $j(1 \le j \le f(G))$ there is a connected subgraph H of G to achieve f(H) = i; Also, we define the IC-index of G as $M(G) = \max f(G)$ and f is an IC-coloring of G. In this paper we examine C_n and determine their IC-indices for n = 10, 11, 12, 14.

Key words: *IC*-coloring; *IC*-index of a graph; connected graph; cycle