文章编号:1005-0523(2021)02-0022-07

模拟酸雨腐蚀钢绞线蚀坑几何尺寸分布规律

许开成1,陈 锐1,彭爱红2,黄文意1,曹艳明1

(1.华东交通大学土木建筑学院,江西 南昌 330013;2. 江西省交通工程集团建设有限公司,江西 南昌 330029)

摘要:为了探讨预应力混凝土钢绞线在模拟酸雨腐蚀下蚀坑的几何尺寸分布规律,从模拟酸雨溶液浸泡腐蚀的梁中取得腐蚀 钢绞线试样,计算腐蚀率并对蚀坑形状进行观察和分类,然后在蚀坑分布集中处截取4段长80 cm 的钢绞线,计算蚀坑密度并 统计蚀坑长度、宽度与深度。结果表明:蚀坑形状可分为椭球形、马鞍形和棱锥形;蚀坑密度随腐蚀率增大而增大,而其相对增 长率减小;蚀坑长度不服从正态分布,深度服从对数正态分布,宽度只是近似服从对数正态分布;蚀坑几何尺寸的整体分布特 征是相对短、窄、中深的蚀坑分布较多,而长、宽、深或者长、宽、浅的蚀坑分布相对较少;蚀坑长度和深度有明显的分形特征,而 蚀坑宽度无明显的分形特征;随着腐蚀率的增大,各蚀坑的几何尺寸逐渐趋于一致,蚀坑坑长多分布在较小值附近,坑深多分 布在中值附近,坑宽多分布在较小值和中值。

关键词:模拟酸雨;钢绞线;蚀坑;几何尺寸;分形特征

中图分类号:U24 文献标志码:A

本文引用格式:许开成,陈锐,彭爱红,等. 模拟酸雨腐蚀钢绞线蚀坑几何尺寸分布规律[J]. 华东交通大学学报,2021,38(2):22-28. DOI:10.16749/j.cnki.jecjtu.20210416.009

Distribution Characteristics of Pits Size of Steel Strands Corroded by Simulated Acid Rain

Xu Kaicheng¹, Chen Rui¹, Peng Aihong², Huang Wenyi¹, Cao Yanming¹

(1.School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China;

2. Jiangxi Communications Engineering Group Construction Co., Ltd., Nanchang 330029, China)

Abstract: With the corroded steel strands from prestress concrete beams contaminated by simulated acid rain, the corrosion rate of the steel strands was calculated and the configuration of the pits were surveyed and classified. Then, with 4 samples of 80 cm long steel strand intercepted at the distribution central areas of the pits, the density, length, width and depth of the pits were obtained to explore the distribution characteristics of size of pits on steel strands corroded by simulated acid rain. The results reveal that the configuration of the pits can be classified as ellipsoid, saddle and pyramid. With the corrosion rates increasing, the pits become denser but its relative increase rates declined. The length is not subject to normal distribution but to lognormal distribution as the depth, and the width approximately is subject to lognormal distribution. The overall distribution characteristics of the pits size are short and narrow and moderate deep, whose length and depth have obvious fractal characteristics for the width of pits. As the corrosion rates increase, the configuration of all pits trend to approach. The length is found at the relative minor values and the width is found at the relative moderate values, however, the depth is found between the relative minor value and moderate value.

Key words: simulated acid rain; steel strand; etch pit; geometric dimension; fractal characteristics

Citation format: XU K C, CHEN R, PENG A H, et al. Distribution characteristics of pits size of steel strands corroded by simulated acid rain[J]. Journal of East China Jiaotong University, 2021, 38(2):22–28.

收稿日期:2020-12-11

基金项目:国家自然科学基金项目(51968021);江西省自然科学基金项目(20202BAB204031);江西省交通运输厅科技项目 (2019Q0025)

作者简介:许开成(1973—),男,教授,博士,研究方向为预应力混凝土结构耐久性。E-mail:xkcxj@ecjtu.edu.cn。

⁽C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

随着工业化的进程不断推进,酸雨问题也越来 越突出,我国是全球三大酸雨区之一,全球强酸雨 中心已经转移到我国长江以南地区、包括南昌、长 沙等地的华中区域已经超过西南酸雨区成为我国 目前最大的酸雨污染区[1-2]。混凝土微观结构由于酸 雨中的盐类(如氯盐、硫酸盐等)长期侵蚀慢慢产生 微裂缝³³,耐久性逐渐劣化,外部荷载耦合作用下更 会加速劣化4,对于钢筋或预应力筋的保护慢慢失 效。在服役过程中,预应力混凝土结构中的预应力 筋自身截面积小,又处于高应力状态,因而预应力 筋对腐蚀环境极度敏感。若因混凝土的劣化而使 预应力筋长期处于腐蚀环境中,其腐蚀速度会快速 增长,一旦预应力筋因应力腐蚀而断裂,混凝土结 构也会迅速开裂破坏,这将引起重大工程事故,严 重危害经济和生命安全。

酸雨腐蚀已经引起了业内广泛关注,酸雨腐蚀 后的钢绞线性能退化成为预应力混凝土结构性能 评价的重要问题。由于钢绞线钢丝的腐蚀蚀坑具有 明显特征,而其受拉性能退化程度及概率特征可能 由蚀坑的几何形状及其尺寸分布特征所决定,研究 钢绞线在模拟酸雨环境下的腐蚀蚀坑的几何形状 和尺寸分布特征有利于进一步研究其受拉性能。 Tuutti^[7]对比自然腐蚀和加速腐蚀下,钢筋表面的蚀 坑数,形状及其尺寸分布特征,发现钢筋最大蚀坑 深度可达到平均深度的 4~10 倍, 而 Gonzalez 等¹⁸指 出这个比值为 4~8 倍。Darmawan 等¹⁹⁷对氯盐环境下 钢绞线钢丝的最大坑深分布特征进行了研究,结果 表明蚀坑最大深度服从 Grumbel 极值-I 型分布。翁 永基等[10-11]统计了低碳钢板蚀坑的深度和直径,发 现这两个尺寸的分布具备分形特征。李富民等间在 此基础上将氯盐腐蚀钢绞线蚀坑形状抽象概括为 椭球形和马鞍形,发现蚀坑长度服从对数正态分 布,蚀坑深度不服从常见分布,两者具有明显分形 特征;而蚀坑宽度近似服从正态分布,无明显分形 特征。

目前,在腐蚀钢绞线蚀坑尺寸分布研究方面, 已有文献多集中于氯盐环境下钢绞线的腐蚀,酸雨 腐蚀钢绞线蚀坑研究这方面还不够深入。为获得酸 雨腐蚀钢绞线蚀坑几何尺寸分布特征,采用模拟酸 度、长度、宽度和深度的分布特征分别进行统计分 析。通过钢绞线的蚀坑形状及其尺寸分布规律可进 一步分析腐蚀后钢绞线的受拉性能。我国酸雨属于 硫酸型,本文模拟酸雨腐蚀钢绞线的研究,对实际 工程中钢绞线腐蚀情况和性能分析具有一定的参 考意义。

材料与方法

1.1 材料

本文腐蚀钢绞线取自于模拟酸雨环境下的预 应力混凝土梁,钢绞线采用 ø15.2(1×7)1 860 级 钢绞线,成分(mass%):0.76 C,0.60 Mn,0.26 Si,0.024 P,0.025 S,其主要性能指标如表1所示。

表1 钢绞线性能指标 Tab.1 The performance of steel strand

公称直 径/mm	非比例 延伸为 0.2%的 力/kN	最大力 /kN	伸长率 /%	抗拉强 度/MPa	屈服强 度/MPa	弹性模 量/GPa
15.2	249.2	275.3	4.1	1 983	1 860	195

梁试件所用混凝土强度等级按 C50 设计,水泥 是 42.5 普通硅酸盐水泥,细骨料选用赣江中砂,Ⅱ 区级配,粗骨料选用连续级配 5~25 mm 碎石。混凝 土质量配合比为水:水泥:细骨料:粗骨料:氯化钠= 0.42:1:1.19:2.53:0.04。本试验采用固含量为 19.8%的 聚羧酸高效减水剂,其减水率为31%,实际掺量为 水泥质量的1%。

综合分析江西省气象资料四确定模拟酸雨溶液 的成分并将模拟酸雨溶液 pH 值调节为 4.5,每升水 加入的化学试剂配比如下:硫酸钠 0.994 g,硫酸镁 0.240 g, 硫酸铵 0.132 g, 硝酸钙 0.164 g, 氯化钠 0.012 g_o

1.2 方法

试验采用内掺盐加速腐蚀的方法对预应力 混凝土梁钢绞线进行研究,共制作了4根100 mm× 160 mm×1 000 mm 后张预应力混凝土梁。在梁试件 养护 28 d 后对预应力筋进行张拉,张拉完成后有效 预应力约1100 MPa。梁试件制作完成后放入模拟 酸雨溶液中进行腐蚀,采用室内全浸泡腐蚀,腐蚀 时间分别为 2 000,4 000,6 000 h 和 8 000 h。

腐蚀完成后对梁进行破形,取出钢绞线试件, 雨溶液腐蚀预应力钢绞线,并对其蚀坑形状及其密。在腐蚀段截取 80 cm 称重、按照规范 GB/T 50082-2009的要求打磨除锈后称重,完成腐蚀率(即失重 率)的测定。测量和统计钢绞线蚀坑几何参数,其内

容分别是:蚀坑几何形状和分布密度,蚀坑长度 L, 蚀坑宽度 W,蚀坑深度 H。蚀坑计数原则是 H≥0.1 mm,且 L≥1 mm 或者 W≥1 mm。用数显卡尺测量 L和 W,精度为 0.01 mm;用单尖头电子螺旋测微器 测量 H,精度为0.001 mm。

2 蚀坑的几何形状与分布密度

2.1 蚀坑的几何形状

通过对腐蚀预应力筋的观察发现,钢绞线表面 具有较明显的蚀坑特征,蚀坑随机分布在外表面或 者两股钢丝交接处,而且蚀坑大量集中出现在与空 气接触的预留洞口附近,这表明氧气能促进钢绞线 的腐蚀,增大钢绞线局部腐蚀率。劈散钢绞线后外 围与中心钢丝之间可见大量红锈,处理后无明显蚀 坑,说明此处几乎未受到模拟酸雨溶液腐蚀作用, 对比未腐蚀钢绞线可知,这是由于存放时暴露在空 气中形成的锈蚀。

钢绞线蚀坑形状多不规则,如图1所示简单抽 象为3类蚀坑形状,分别为椭球形、马鞍形和棱锥 形。椭球形蚀坑特点是内表面向内凹进,沿钢丝纵 轴线呈长形,两端为弧形,形似椭球;马鞍形蚀坑特 点是沿钢丝横轴线呈长形,沿纵轴线两端向内凸 出,似马鞍形;棱锥形蚀坑特点是通过蚀坑纵、横断 面轮廓线总体呈下挠形状,蚀坑深度略深,沿钢丝 纵轴方向两端有尖角,形似棱锥。从微观组织结构 层面分析,每根钢丝由许多不同的珠光体团¹¹³构成。 珠光体团沿钢丝纵轴排列,呈长条状或长板状,其 中同一个珠光体团其内部自身电化学特性相似,而 不同珠光体团的电化学特性则不同,腐蚀发展更多 地集中在某部分珠光体团内部¹⁶;因而会出现长形 的椭球形蚀坑或棱锥形蚀坑,当腐蚀沿着横断面进 行,则形成马鞍形蚀坑。

2.2 蚀坑的分布密度

钢绞线的腐蚀率、蚀坑形状及蚀坑密度分布 如表 2 所示。根据表 2 数据绘制蚀坑占比如图 2 所示,蚀坑密度及相对增长率如图 3 所示。在同一 腐蚀率下,棱锥形蚀坑数量最少;PS2~PS4 钢绞线 上马鞍形蚀坑数量最多,而在 PS1 钢绞线上则是 椭球形蚀坑数量最多,但与马鞍形蚀坑数量相差 不多。

(a) 椭球形蚀坑

(b) 马鞍形蚀坑

(c) 棱锥形蚀坑

图 1 蚀坑几何形状图 Fig.1 The geometry diagram of pits

	表 2	蚀坑形状及蚀坑密度分布表	
Tab.2	Distribution of	of density and geometric configuration of	pit

试件编号	腐蚀率/%	棱锥形蚀坑数/个	椭球形蚀坑数/个	马鞍形蚀坑数/个	总蚀坑数/个	蚀坑密度/m-1
PS1	1.32	21	49	44	114	142.5
PS2	2.04	12	66	105	183	228.8
PS3 (C)1994-	-2021 China A	16 cademic Journal	86 Electronic Publi	shing <mark>112</mark> House. All	214 rights reserved	l. http://www.cnki.ne
PS4	2.78	14	87	128	229	286.3

Fig.2 Percentage of various pits

结合图 2 看,随着腐蚀率的增大,3 类蚀坑占比 趋于稳定。其中,棱锥形蚀坑在腐蚀率为 1.32%时, 占比最大,之后占比减小。可能是由于腐蚀初期,腐 蚀以点为中心均匀向四周进行发展,不同类型的蚀 坑均有形成;早期主要沿钢丝纵向发展,故长形的 蚀坑较多,以椭球形蚀坑为主;棱锥形蚀坑可能是 由于长板状珠光体团宽度垂直钢丝横断面,腐蚀向 深度发展形成的,棱锥形蚀坑形成条件相对较难, 故棱锥形蚀坑最少。

随着腐蚀的进行,腐蚀深度加深,呈现出腐蚀 沿横断面进行的现象,此时马鞍形蚀坑最多。在不 同腐蚀率下,总蚀坑数随腐蚀率的增加而增加,棱 锥形与椭球形蚀坑在腐蚀率达到一定值后,基本不 再增加,而马鞍形蚀坑仍在不断增加,这表明腐蚀 的进行伴随着新蚀坑的不断产生和旧蚀坑在几何 尺寸上的不断扩展。

从图 3 可知,与总蚀坑数相对应的蚀坑密度也 是递增,但是显然相对增长速率在不断减小,这表 明在腐蚀初期,未腐蚀区域较多,多个腐蚀点同时

开始腐蚀,蚀坑增长速率较快。随着腐蚀的进行,未 腐蚀区域面积减小,且蚀坑表面附着的腐蚀产物阻 碍了蚀坑的发展,甚至是相邻蚀坑出现贯通,尽管 蚀坑尺寸增加但数量减少了。

3 蚀坑几何尺寸分布特征

3.1 同一腐蚀率下蚀坑几何尺寸分布特征

在本试验腐蚀率范围中,为了更好地分析在同 一腐蚀率下的蚀坑几何尺寸的分布规律,分别对蚀 坑长度 L、宽度 W 及深度 H 做频率分布分析,并对 其进行正态分布检验或对数正态分布检验。

钢绞线蚀坑长度 1.10 mm ≤L≤12.39 mm, 在 α_{001} 显著水平下,显著性系数 α 分别为 0.000,0.000, 0.001,0.001,4个样本均不服从正态分布;显著性 系数 α 分别为 0.085,0.012,0.348,0.220,4 个样 本均服从对数正态分布。蚀坑宽度 0.64 mm≤W≤ 4.85 mm, 在 α₀₀₁ 显著水平下, 显著性系数 α 分别为 0.389,0.000,0.000,0.139,4个样本中有2个服从正 态分布; 在 α₀₀₁ 显著水平下, 显著性系数分别为 0.729,0.011,0.003,0.701,4个样本中有3个服从 对数正态分布。蚀坑深度 0.086 mm $\leq H \leq 1.078$ mm, 在 α₀₀₁ 显著水平下,显著性系数 α 分别为 0.557,0.005,0.174,0.102,有1个不服从正态分布, 但 对 数 正 态 分 布 渐 进 : 显 著 性 系 数 α 为 0.385,0.295,0.031,0.366,4个样本都服从对数正态 分布。蚀坑长度完全不服从正态分布,而全部服从 对数正态分布;宽度不完全不服从正态分布,近似 服从对数正态分布;深度近似服从正态分布,全部 服从对数正态分布。

综上,可以认为钢绞线蚀坑长度不服从正态分 布,深度均服从对数正态分布,而宽度只是近似服 从对数正态分布。综合分析蚀坑几何尺寸在同一腐 蚀率下的分布特征,其整体分布特征是相对短、窄、 中深的蚀坑分布较多,而长、宽、深或者长、宽、浅的 蚀坑分布相对较少。

3.2 不同腐蚀率下蚀坑几何尺寸分布特征

 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 小
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ
 ハ

$$D = \frac{\log N_{\varepsilon}}{\log(1/\varepsilon)} \tag{1}$$

式中: *ε* 为测量时指定的单元尺度; *N*_{*e*} 为使用单元 尺度 *ε* 时统计到的数量; *D* 为豪斯多夫分形维数, 每个分形体系的分形维数 *D* 为定值。

图 4 为根据 4 个样本坑长分布直方图,取 L 的 区间中值的自然对数 lnL 作为横坐标,L 出现的概 率 P 的自然对数 lnP 作为纵坐标绘制的分形特征 图。在双对数坐标下,样本中大部分散点明显具有 线性趋势,这也就表明了其分布的分形特征,即趋 势线的斜率是其分布分维。

总体来看,蚀坑长度 L 的分布分维 D 随着钢绞 线腐蚀率的增大而增大。考虑两类极限情况,一是 完全的均匀腐蚀,所有蚀坑的长度都相同,该情况 下对应的分形维数 D=∞; 二是完全的不均匀腐蚀, 各蚀坑长度 L 出现的概率相同,该情况下对应的分 形维数 D=0。随着钢绞线腐蚀率的增大,蚀坑长度 逐渐趋于一致。同一腐蚀率下,腐蚀早期阶段,钢丝 上受腐蚀区域较小,大量的点蚀坑不断出现,而老 蚀坑在长度上的拓展伴随着新蚀坑的出现,新、老 蚀坑的长度差值明显,长、短蚀坑出现的概率相同。 图 4(b)~图 4(d)中左侧奇异点的出现可能由于新 蚀坑生成速度减缓;而图 4(a)和图 4(d)右侧的奇 异点的出现可能是由于蚀坑之间的贯通形成更长 蚀坑。由此可知,随着腐蚀的发展,新蚀坑的生成逐 渐减慢,以老蚀坑的发展为主,又因为长蚀坑的腐 蚀产物较多阻碍了长蚀坑的发展,而短蚀坑的腐蚀 产物保护作用较小。相对而言,短蚀坑的腐蚀比长 蚀坑更快,然后随着腐蚀发展,其长度将逐渐趋于 一致。不同腐蚀率下,分维分布点总体趋势上相同, 可将腐蚀率大小转化为腐蚀发展阶段来分析,腐蚀 率较小的可当作为腐蚀早期,蚀坑长度差异较大, 反之则为腐蚀后期,蚀坑长度相差不大。

图 5 为 4 个样本的蚀坑宽度分形特征图,显然 在双对数坐标下,PS1 与 PS4 的线性拟合不是很好, 线性方程相关系数 R²分别为 0.521 1 和 0.666 5,表 明蚀坑宽度不具有分形特征。从前面的蚀坑宽度分 布直方图统计分析中得到,4 个样本的蚀坑宽度均 值分别为 1.59,1.61,1.76 和 1.84,显然蚀坑宽度均 值随腐蚀率增大而增大,蚀坑多数聚集在窄和中宽 之间,表明各层次蚀坑宽度均衡增大。

图 6 为 4 个样本的蚀坑深度分形特征图,在双 对数坐标下,大部分分维分布散点具有明显的线性 趋势,表明蚀坑深度具有一定的分形特征。总体而

图 4 蚀坑长度分形特征图 Fig.4 Fractal characteristics of pits length 言,与蚀坑长度相同,蚀坑深度的分布分维随着腐 蚀率的增大而增大。考虑两类极限状态,当分形维 数 D=∞ 时,各蚀坑腐蚀均匀发展,深度完全相同; 当分形维数 D=0 时,各蚀坑发展不均匀,不同深度 具有相同出现概率。随腐蚀率的增大,坑深的分布 也表现出了逐渐接近的趋势,坑深的分布形成原因 与坑长相同。

综上可知,随着腐蚀率的增大,各蚀坑的几何 尺寸逐渐趋于一致,蚀坑坑长多分布在较小值附 近,坑深多分布在中值附近,坑宽多分布在较小值 和中值。

4 结论

 1)通过对4根钢绞线上550个蚀坑的观察,模 拟酸雨腐蚀钢绞线蚀坑形状可分为3类,分别为棱 锥形、椭球形和马鞍形。

 2)模拟酸雨腐蚀钢绞线的蚀坑密度随腐蚀率 的增大而增大,但其相对增长率减小。

3)同一腐蚀率下,蚀坑长度不服从正态分布, 与深度均服从对数正态分布,宽度只是近似服从对 数正态分布;蚀坑几何尺寸的整体分布特征是相对 短、窄、深的蚀坑分布较多,而长、宽、深或者长、宽、 浅的蚀坑分布相对较少。

4)不同腐蚀率下,钢绞线的蚀坑长度和深度有 明显的分形特征,而蚀坑宽度无明显的分形特征; 随着腐蚀率的增大,各蚀坑的几何尺寸逐渐趋于一 致,蚀坑坑长多分布在较小值附近,坑深多分布在 中值附近,坑宽多分布在较小值和中值。

参考文献:

- [1]张新民,柴发合,王淑兰,等.中国酸雨研究现状[J].环境
 科学研究,2010,23(5):527-532.
- [2]朱求安,江洪,宋晓东.基于空间插值方法的中国南方酸 雨时空分布格局模拟及分析[J].环境科学研究,2009,22 (11):1237-1244.

- [3] 乔宏霞,周茗如,何忠茂,等.硫酸盐环境中混凝土的性能 研究[J].应用基础与工程科学学报,2009,17(1):77-84.
- [4] 逯静洲,田立宗,刘莹,等. 轴压与硫酸盐实时耦合作用下 混凝土耐久性试验研究[J]. 应用基础与工程科学学报, 2020,28(2):386-395.
- [5] 李富民,袁迎曙. 氯盐环境下混凝土内钢绞线的锈蚀特性 试验研究[J]. 铁道科学与工程学报,2006(4):23-28.
- [6] 李富民,袁迎曙. 氯盐腐蚀钢绞线蚀坑几何尺寸的分布特征[J]. 煤炭学报,2011,36(11):1826-1831.
- [7] TUUTTI K. Corrosion of steel in concrete[M]. Sweden: Swedish Foundation for Concrete Research Stockholm, 1982.
- [8] GONZALEZ J A, ANDRADE C, ALONSO C, et al. Comparison of rates of general corrosion and maximum pitting pen etration on concrete embedded steel reinforcement[J]. Cement and Concrete Research, 1995, 25(2):257–264.
- [9] DARMAWAN M S,STEWART M G. Spatial timedependent reliability analysis of corroding pretensioned prestressed concrete bridge girders[J]. Structural Safety, 2007, 29(1): 16–31.
- [10] 翁永基,李相怡.分维方法对碳钢土壤腐蚀行为的表征[J]. 石油化工高等学校学报,2005(2):56-59.
- [11] BIAN L, WENG Y J, LI X Y. Observation of microdroplets on metal surface in early atmospheric corrosion[J]. Electrochemistry Communications, 2005, 7(10):1033–1038.
- [12] 陈梦成,罗晶,许开成. 江西省酸雨特征分析及预测模型[J]. 环境科学与技术,2014,37(10):167-170.
- [13] TORIBIO J, AYASO F J. Anisotropic fracture behaviour of cold drawn steel: a materials science approach[J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2003, 343(1):265-272.
- [14] 张济忠. 分形[M]. 北京:清华大学出版社, 1995.

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net