文章编号:1005-0523(2022)01-0001-11

UHTC 功能梯度湿接缝的抗冲击性能

梅若诗,王 凯,余国庆,郭柳君

(华东交通大学土木建筑学院,江西 南昌 330013)

摘要:针对预制桥面板湿接缝服役期间受冲击荷载发生破坏的现象,引入功能梯度组合结构设计理念,设计出一种预制桥面板 UHTC 功能梯度湿接缝,以 UHTC 功能层相对厚度以及 UHTC 层抗压强度的大小为主要变化参数,采用落锤冲击法研究了湿 接缝模型试件的抗冲击性能。结果表明,抗压强度一定时,冲击寿命随着 UHTC 功能层相对厚度的增加呈指数增长,并建立了 关于 UHTC 功能层相对厚度的湿接缝模型试件冲击韧性预测模型。对于超高韧性功能层厚度相同的模型试件,冲击耗能随着 UHTC 层抗压强度的增大而减小,且减小幅度随着 UHTC 层抗压强度的增大而增大。不同抗压强度下时的初裂寿命与终裂寿 命满足线性相关。根据灰色关联分析,得到 3 种影响因素对终裂寿命的影响程度由强到弱为:初裂寿命>UHTC 功能层相对厚 度>抗压强度>0.5。在上述基础上建立两种终裂寿命预测模型 Model_I 和 Model_II,经检验计算 Model_I 的预测精度较高,适 用性良好,而 Model_II 的精度较差,适用性也较差。

关键词:湿接缝;功能梯度;冲击;灰色关联;寿命预测

中图分类号:U445.7+1 文献标志码:A

本文引用格式:梅若诗,王凯,余国庆,等. UHTC 功能梯度湿接缝的抗冲击性能[J]. 华东交通大学学报,2022,39(1):1-11. DOI:10.16749/j.cnki.jecjtu.2022.01.001

Impact Resistance for Wet Joints of UHTC Functional Gradient

Mei Ruoshi, Wang Kai, Yu Guoqing, Guo Liujun

(School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China)

Abstract: Aiming at the phenomenon that the wet joints of precast bridge decking are damaged by impact load during service, a functional gradient composite structure design concept was introduced to design a wet joint of functional gradient of precast bridge decks. Taking the relative functional layer thickness and the compressive strength of the UHTC layer as the main variation parameters, the impact resistance of wet joint model specimens was studied by using drop-weight impact test. The results show when the compressive strength is constant, the impact life increases exponentially with the increase of the relative thickness of the functional layer, and the prediction model of the impact toughness of wet joint model specimens about the relative functional layer thickness is established. For the model specimens with the same thickness of UHTC, the impact energy consumption decreases with the increase of the compressive strength of UHTC layer, and the reduction range increases with the increase of the compressive strength of UHTC layer, and the reduction analysis, the degree of influence of the three factors on the fracture life is ranked from strong to weak as follows: initial crack life>relative functional layer thickness>compressive strength>0.5. On the basis of the above, two prediction models of failure impact life, including Model_I and Model_II, are established. The results show that the prediction ac-

收稿日期:2021-06-20

基金项目:国家自然科学基金项目(51478183);江西省重点研发计划项目(20192BBG70079);江西省自然科学基金项目(20192 AB206042)

curacy of Model_I is high and its applicability is good, while the accuracy and applicability of Model_II are poor. Key words: wet joint; functional gradient; impact; grey relation; life prediction

Citation format: MEI R S, WANG K, YU G Q, et al. Impact resistance for wet joints of UHTC functional gradient[J]. Journal of East China Jiaotong University, 2022, 39(1):1–11.

预制桥面板湿接缝因其便于工人施工并能显 著缩短工期的特点而被广泛应用于桥梁工程中^{III}, 作为桥梁上的关键受力构件^{I2I},在其服役过程中,不 可避免地会承受落石、跳车现象等冲击荷载作用, 从而导致湿接缝尤其是纵向湿接缝部位发生开裂、 塌陷等病害现象,进而将严重影响桥梁的使用寿 命。对预制桥面板湿接缝进行抗冲击性能的研究并 预测其破坏寿命,改进湿接缝设计方案以延长破坏 寿命,减少维修费用,具有十分重要的实用意义和 科学研究价值。

超高韧性混凝土(ultra-high toughness concrete, UHTC,也称超高性能混凝土)是一种新型的混凝土 结构建筑材料,因其优越的机械性能和材料性能被 逐渐应用于桥梁工程中。针对UHTC的力学性能及 其配比设计已有诸多研究报道^[3-15],并取得了许多积 极的成果。然而,这类研究都忽略了制作UHTC的 材料需要较高的成本,这大大限制了UHTC在桥梁 工程中的广泛应用。

已有研究表明,UHTC 对混凝土结构整体抗拉 强度的提高效果明显优于抗压强度的提高效果[19]. 整个混凝土结构均为成本较高的 UHTC 显然是不 经济合理的。由此提出了 UHTC 功能梯度混凝土这 种多层混凝土结构的概念[17]。目前对功能梯度混凝 土的研究主要集中在对其抗弯性能、抗剪性能以及 断裂性能等[16,18-21],而对 UHTC 功能梯度湿接缝这种 UHTC 与素混凝土(normal concrete, NC)协同受力 的组合结构的抗冲击性能及其冲击寿命的相关预 测还不够。同时存在大量研究表明[22-24],湿接缝的破 坏主要发生湿接缝受拉侧。结合技术经济性考虑, 本文引入功能梯度组合结构设计理念将预制桥面 板湿接缝纵向受拉部分 NC 替换成 UHTC, 形成一 种预制桥面板 UHTC 功能梯度湿接缝,图1为预制 桥面板 UHTC 功能梯度湿接缝设计示意图。本文通 过落锤冲击法研究了 UHTC 功能层相对厚度以及 UHTC 层抗压强度的大小对湿接缝模型试件的抗冲 击性能的影响,同时结合试验数据建立终裂冲击寿 命预测数学模型。

图 1 预制桥面板 UHTC 功能梯度湿接缝设计示意图 Fig.1 Schematic diagram for designing wet joint of functional gradient of prefabricated bridge deck UHTC

1 试验概况

1.1 原材料

本试验所用原材料: 江西海螺水泥有限公司生 产的 42.5 级普通硅酸盐水泥(C);南昌产石灰岩质 碎石(G),粒径 5~10 mm 连续级配;赣江江砂(S),细 度模数为 2.8,属于 II 区中砂;南昌市火电厂生产的 I 级粉煤灰(FA),平均粒径 65.71 μm;江西钢厂产 的 S95 级矿粉(SL),平均粒径 65.71 μm;江西钢厂产 的 S95 级矿粉(SL),平均粒径 0.1 μm;精细石 英砂(QS),SiO₂ 含量大于 97%,粒径 0.3~0.6 mm;江 苏博特新材料有限责任公司产的 JM-PCA(I)型高 效聚羧酸减水剂(PC);江苏博特新材料有限公司生 产的 SBT-SRA I 系列混凝土减缩剂(SRA);纤维是 由钢纤维(STF)和聚丙烯纤维(PP)按比例混杂而 成,两种纤维形态如图 2。纤维特征参数见表 1,其 中:*f*y 为抗拉强度;*E*u 为弹性模量;*D* 为纤维直径;*L* 为纤维长度;δ为纤维吸水率。

主 1	红维性能性杆
12 1	与 年 正形 11 17
T7*1.	· · · · · · · · · · · · · · · · · · ·

3

	Tab.1 Fiber performance index						
Туре	Specific gravity/ (g/cm^3)	f _y /MPa	E_{u} /GPa	D/µm	δ/%	<i>L</i> /mm	
STF	7.8	2 000	210	200	4	13	
PP	0.91	600	6	50	18	7	

素混凝土按强度等级 C40 进行配制,其质量配合比水泥:粉煤灰:砂:粗骨料:减水剂:水为 1:0.112: 1.739:2.720:0.003:0.371。为研究抗压强度对 UHTC

湿接缝抗冲击性能的影响,设计出4种不同抗压强 度的 UHTC, 配比见表 2。

表 2 超高韧性混凝土配合比 Tab.2 Proportion of UHTC

Tab.2 Proportion of UHTC							kg/m ³			
Type	С	SL	SF	QS	STF	PP	PC	SRA	Water	W/B
U1	800	160	200	880	110	10	32	10	209	0.18
U2	800	160	200	880	110	10	32	10	232	0.20
U3	800	160	200	880	110	10	32	10	255	0.22
U4	800	160	200	880	110	10	32	10	278	0.24

1.2 试件制作

立方体抗压试验采用 150 mm×150 mm×150 mm 标准。抗冲击性能试验采用落锤法进行评价。落锤 法模型试件尺寸为 150 mm×150 mm×40 mm。为研 究不同 UHTC 功能层相对厚度对超高韧性湿接缝 抗冲击性能的影响,共制备了 5 种不同 UHTC 功能 层相对厚度的预制桥面板 UHTC 功能梯度湿接缝

表 3 抗冲击性能试验方案 Tab.3 Impact resistance test scheme

Test scheme	H_r	$f_{ m cu}$ /MPa
NC	0	/
U1-0.25	0.25	165
U2-0.25	0.25	160
U3-0.25	0.25	145
U4-0.25	0.25	140
U1-0.50	0.50	165
U2-0.50	0.50	160
U3-0.50	0.50	145
U4-0.50	0.50	140
U1-0.75	0.75	165
U2-0.75	0.75	160
U3-0.75	0.75	145
U4-0.75	0.75	140
U1-1.00	1.00	165
U2-1.00	1.00	160
U3-1.00	1.00	145
U4-1.00	1.00	140

模型试件。抗冲击性能试验方案见表 3,其中 H_r为相对功能梯度厚度,即 UHTC 层相对总厚度的比值;*f*_{cu}为 UHTC 的抗压强度。

本试验素混凝土与超高韧性混凝土均采用强制式搅拌机搅拌,其中对于超高韧性混凝土为防止 纤维成团并保证其均匀分散至基体中,先将除纤维 以外的混合料加入搅拌机干拌 2 min,然后加入 50%的水以及全部减水剂和减缩剂的混合液搅拌 1 min,再依次加入钢纤维和聚丙烯纤维湿拌 2 min, 最后加入剩余的 50%的水搅拌 6~7 min,直至纤维 分散均匀。NC 单层体系模型试件和 UHTC 单层体 系模型试件一次浇注成型并充分振捣密实,而 UHTC 功能梯度模型试件采用分层浇注法进行浇 注。在试模内先浇注普通混凝土层,当素混凝土充 分振捣并达到预设层厚时,在其表面进行界面增强 处理,随后浇注超高韧性混凝土并适当插捣。

1.3 试验方法

立方体抗压强度按 CECS 13:2009《纤维混凝 土试验方法标准》^[25]进行测试,测得其 28 d 抗压强 度。落锤法冲击试验参照美国混凝土协会 544 (ACI544)提出的落锤法^[9],图 3 为落锤法冲击试验 示意图。冲击过程中仔细观察试件表面,当试件表 面出现第一条肉眼可见微裂缝时视为初裂,记此时 的冲击次数为初裂寿命 N₁;继续冲击循环,当试件 破坏至与 4 块挡板中的任意 3 块相接触时,视为 试件破坏,记此时的冲击次数为终裂寿命 N₂;定义 U为冲击延性指数,表征混凝土初裂后的剩余抗冲击性能^[26];冲击耗能A_k也是描述构件抗冲击性能的重要指标之一,其定义式如下所示

$$U = \frac{N_2 - N_1}{N_1} = \frac{\Delta N}{N_1}$$
(1)

 $A_{k} = N_{2} mgh \qquad (2)$

式中:m 为钢球的质量,本研究中取 4.5 kg;g 为重 力加速度,取 9.81 N/kg;h 为钢球落距,本研究中取 500 mm。

图 3 落锤法冲击试验示意图 Fig.3 Schematic diagram of impact test with drop-weight method

2 结果与讨论

2.1 破坏形态

对于冲击试验模型试件,在冲击荷载的作用 下,各试件组呈现出不同的冲击破坏形态。图 4 为 冲击试验的破坏形态。素混凝土试件 NC 在表面出 现 1~2 条贯穿裂缝后完全断裂为 2~3 块,均表现出 明显的混凝土脆性破坏特征,这说明在冲击作用时 素混凝土内部应力分布状态是不均匀的,导致局部 应力过大而断裂;对功能梯度混凝土试件和单层 UHTC 试件,在表面出现第 1 条裂缝后,未发生脆性 破坏,仍然能继续承受冲击荷载作用,随着冲击次 数的不断增加,产生新裂缝,而且随着原有裂缝继 续扩展,直至试件破坏,出现 3~4 条裂缝,将试件分 成 3~4 块,裂缝呈 X 形分布,表现出明显的韧性破 坏特征,在相同抗压强度条件下,随着 UHTC 功能 层相对厚度的增加,冲击荷载作用点附近的细小裂 缝会更多,而在 UHTC 功能层相对厚度一定时,抗 压强度越大,冲击荷载作用点附近的细小裂缝越 多。以上表明,由于纤维的加入,混凝土基体由脆性 破坏变为韧性破坏,试件发生开裂后,钢纤维和聚 丙烯纤维对裂缝具有桥接的作用,纤维的拉断和拔 出对冲击荷载产生的能量有一定的消耗作用,阻止 裂缝的扩展,提高了整个试件的延性与冲击韧性。 综上,UHTC 功能层能有效改善结构的阻裂能力和 抗冲击性能。

(a) NC

(b) U4–0.75

(c) U4-1.00

(d) U1–0.75 (e) U2–0.75 (f) U3–0.75 (g) U4–0.75

图 4 模型试件冲击破坏形态 Fig.4 Impact failure form of model specimen

2.2 冲击寿命

如图 5 为 f_{ex} =165 MPa 时的初裂寿命 N_1 以及初 裂终裂寿命差 ΔN 随 UHTC 功能层相对厚度 H_r 变 化的变化趋势。由图 5 可知,随着 UHTC 功能层相 对厚度的增加,初裂寿命 N_1 与初裂终裂寿命差 ΔN 都有不同程度的增长,并且随着 UHTC 功能层相对 厚度的增加,2 种冲击寿命的增长速率也逐渐变大。

图 5 冲击寿命与 UHTC 功能层相对厚度的关系 Fig.5 The relationship between impact life and relative thickness of UHTC function layer

预制桥面板 UHTC 功能梯度湿接缝模型试件 冲击寿命的增加表明其抗冲击性能增强。试验结果 表明冲击寿命 N 可以表示为关于 UHTC 功能层相 对厚度的指数函数(图 5),其函数表达式为

$$N_1 = a + b e^{a n_r} \tag{3}$$

$$\Lambda N = c e^{\beta H_r}$$
(4)

式中:*a*,*b*和*c*为与浇筑方式、养护条件以及素混凝 土性能等试验初始条件有关的参数,一般而言,当 除 UHTC 功能层相对厚度的试验条件确定时,*a*+*b*+ *c*=const,而且这个常数等于素混凝土的理论终裂寿 命;*α*为与初裂前与混凝土的阻裂性能和抗冲击性 能相关的参数,定义为初裂前功能层厚度增效指 数,用于表征 UHTC 功能层相对厚度对混凝土的初 裂前抗冲击性能的增效作用;*β*为与初裂后与混凝 土的阻裂性能和抗冲击性能相关的参数,定义为初 裂后功能层厚度增效指数,用于表征 UHTC 功能层 相对厚度对混凝土的初裂后抗冲击性能的增效作 用。结合式(1)和式(3),可得终裂寿命 *N*₂计算公式

$$N_2 = N_1 + \Delta N = a + b e^{a m_r} + c e^{\beta m_r}$$
(5)

式中:β=α(1-D_{impact})。定义 D_{impact}为冲击劣化因子,表示冲击荷载下,混凝土初裂后,功能层厚度增效指数的劣化作用。

将式(3)、式(5)代入式(2),得到超高性能功能 梯度混凝土冲击延性关于 UHTC 功能层相对厚度 的函数为

$$U = \frac{N_2 - N_1}{N_1} = \frac{c \operatorname{e}^{\beta H_r}}{a + b \operatorname{e}^{\alpha H_r}} = \frac{1}{\frac{a}{c} \operatorname{e}^{-\beta H_r} + \frac{b}{c} \operatorname{e}^{(\alpha - \beta) H_r}}$$
(6)

已知 U 的表达公式,将该公式作为拟合公式结 合原始数据进行数据拟合得到相应的参数见表 4。 随着抗压强度的增大,D_{impact}逐渐减小直至为负值。 已知高性能混凝土中的纤维能降低混凝土表面水 分蒸发速率,并减小混凝土内外湿度差和温度差, 从而减少混凝土因水分蒸发,收缩作用引起的孔 洞,进而提高混凝土的抗冲击性能。这里在抗压强 度为 140 MPa 时 D_{impact}为负值,很大程度上可能是因 为水胶比较大,UHTC 的强度不足,UHTC 中的纤维 已经不能明显减少混凝土因水分蒸发、收缩作用引 起的孔洞以抵抗混凝土初裂后的裂纹扩展。

£/MD-	Parameter				D	D ²	DCC/1 (
J _{cu} /MPa	a/c	b/c	α	β	$D_{ m impact}$	ñ	к55/а0ј
165	21.604	0.276	10.087	9.096	0.098	0.965	0.016
160	141.795	0.496	16.981	16.393	0.035	0.919	0.027
145	1.643×107	0.520	61.119	60.534	0.010	0.742	0.096
140	10.360	1.042	8.504	8.543	-0.005	0.793	0.030

表 4 湿接缝模型试件冲击延性拟合系数 Tab.4 Fitting coefficient of impact ductility of wetjoints model specimens

2.3 冲击耗能

根据图 6,对各组湿接缝模型试件的冲击耗能 A_k 进行对比分析。由图 6 可以看出:对于 UHTC 功 能层厚度相同的模型试件,其 A_k 随着 UHTC 抗压 强度的增大而增大,且增大幅度随着 UHTC 抗压强 度的增大而增大。当 UHTC 功能层相对厚度 H_r 为 0.50,抗压强度从 165 MPa 减少到 140 MPa 时,湿接 缝模型试件 A_k 分别降低了 10.2%,22.0%和 43.5%。 此外,随着 UHTC 功能层相对厚度的增加 A_k 的降 低率增大。这表明其 UHTC 功能层对湿接缝抗冲击 性能具有较好的增强效应。

2.4 初裂与终裂冲击寿命间的关系

如图 7 为不同抗压强度下初裂寿命 N₁ 与终裂 寿命 N₂ 的关系。由图 7 可知,初裂寿命和终裂寿命 存在某种线性相关性,并且随着抗压强度的增加, 这种线性关系的斜率也在减小。

试验结果表明终裂寿命可以表示为关于初裂 寿命的线性函数(图 7),其函数表达式为

$$N_2 = BN_1 \tag{7}$$

式中:B为与抗压强度相关的参数。

如表 5 为不同抗压强度下的参数 B。随着抗压强 度的增大,B 逐渐减小,在抗压强度为 145~160 MPa 时参数 B 变化不大,这表明在该抗压强度范围下, 终裂寿命受初裂寿命的影响反应并非十分强烈。

表 5 湿接缝模型试件冲击寿命线性拟合系数 Tab.5 Fitting coefficient of impact life of wetjoints model specimens

f _{cu} /MPa	В	R^2	RSS/dof
165	2.363	0.975	113.766
160	2.158	0.982	62.930
145	2.130	0.970	78.688
140	1.958	0.982	25.707

2.5 灰色关联分析

2.5.1 灰色关联分析方法

为了进一步研究相对功能厚度、抗压强度以及 初裂寿命对预制桥面板 UHTC 功能梯度湿接缝抗 冲击性能的影响程度,衡量各因素影响程度的相对 主次顺序,本文选择邓聚龙教授^[27]提出的灰色关联 分析模型进行分析。关联分析作为灰色系统理论中 应用广泛的分支,其基本思想是根据序列曲线几何 形状的相似程度来判断其联系的紧密程度。该方法 能够在信息受限、关系模糊的情况下,通过无量纲 化处理使无序的数据转变为有规律的数据,分析并 确定多个自变量与多个因变量的关联程度^[27-28]。

设参考数列 X_0={X_0 (1),X_0 (2),X_0(3), …,X_0(n)}(在本文中即是终裂寿命数据列);设比 较数列 X_i={X_i(1),X_i(2),X_i(3),…,X_i(n)}(i= 1,2,3)(在本文中指的是 UHTC 功能层相对厚度数 据列、抗压强度数据列以及初裂寿命数据列)。

因为每组数列代表的不同的物理意义,量纲以 及数量级会有很大的差异,若强行直接进行计算分 析,得到的关联度系数之间没办法比较,对各数据

Fig.7 Curve fitting between the impact life of wet joints

列进行无量纲处理。本文采用初值化的无量纲化处 理方式得到新一组的参考数列和比较数列,计算过 程如下

$$X_{0}=\{X_{0}(1), X_{0}(2), X_{0}(3), \cdots, X_{0}(n)\} = \begin{cases} \frac{X_{0}(1)}{X_{0}(1)}, \frac{X_{0}(2)}{X_{0}(1)}, \frac{X_{0}(3)}{X_{0}(1)}, \cdots, \frac{X_{0}(n)}{X_{0}(1)} \end{cases}$$

$$X_{i}=\{X_{i}(1), X_{i}(2), X_{i}(3), \cdots, X_{i}(n)\} = \begin{cases} \frac{X_{-i}(1)}{X_{-i}(1)}, \frac{X_{-i}(2)}{X_{-i}(1)}, \frac{X_{-i}(3)}{X_{-i}(1)}, \cdots, \frac{X_{-i}(n)}{X_{-i}(1)} \end{cases}$$

$$(8)$$

$$\xi \notin \xi \langle k \rangle \Leftrightarrow \forall \xi \langle k \rangle \Leftrightarrow \forall \xi \rangle$$

关联系数 $\xi_i(k)$ 的计算

 $\xi_i(k) =$

$$\frac{\min_{i} \min_{k} |X_{0}(k) - X_{i}(k)| + \rho \max_{i} \max_{k} |X_{0}(k) - X_{i}(k)|}{|X_{0}(k) - X_{i}(k)| + \rho \max_{i} \max_{k} |X_{0}(k) - X_{i}(k)|} (9)$$

式中:本文中*i*=1,2,3;*k*=1,2,3,…,*n*;*ρ*为分辨系数,用来提高关联系数之间的差异性显著性,这里取*ρ*=0.5。

2.5.2 灰色关联分析结果

根据灰色关联分析步骤和落锤法冲击试验结 果,确定灰色关联分析原始数据列,见表 6。原始数 据列进行无量纲化处理后,结果如表 7 所示。

利用软件 Matlab 计算 UHTC 功能层相对厚度、抗压强度、初裂寿命与终裂寿命的灰色关联系数 *ξ* 和关联度 *R*,结果如图 8 和表 8 所示。由表 8 可知,3 种影响因素对终裂寿命的影响程度由强到弱排列为:*N*₁>*H*_r>*f*_{cu}>0.5,前两个关联度均大于 0.8。说明初裂寿命以及 UHTC 功能层相对厚度对终裂寿命的影响十分显著,其中初裂寿命的影响最大。抗压强度的关联度为 0.510,其对终裂寿命影响较显著。

表 6 灰色关联分析原始数据列						
Tab. 6	Gray corre	lation analysis o	n raw data	columns		
No.	$X_1(H_r)$	$X_2(f_{cu}/MPa)$	$X_3(N_1)$	$X_4(N_2)$		
1	1.00	140	51	104		
2	0.75	140	30	56		
3	0.50	140	18	35		
4	0.25	140	13	18		
5	0.00	140	6	7		
6	1.00	145	62	136		
7	0.75	145	37	75		
8	0.50	145	19	48		
9	0.25	145	15	18		
10	0.00	145	6	7		
11	1.00	160	73	156		
12	0.75	160	41	93		
13	0.50	160	23	56		
14	0.25	160	15	20		
15	0.00	160	6	7		
16	1.00	165	75	176		
17	0.75	165	36	95		
18	0.50	165	25	62		
19	0.25	165	17	23		
20	0.00	165	6	7		

	abrasion loss and various factors
Tab.8	Correlation coefficient and degree between
表 8	各因素与破坏冲击寿命的关联系数及关联度

			~
No.	ξ_1	ξ_2	ξ_3
1	1.000	1.000	1.000
2	0.724	0.546	0.918
3	0.773	0.456	0.971
4	0.878	0.402	0.872
5	0.892	0.373	0.917
6	0.644	0.671	0.858
7	0.951	0.639	0.992
8	0.935	0.492	0.862
9	0.878	0.392	0.821
10	0.892	0.365	0.917
11	0.526	0.609	0.890
12	0.794	0.691	0.860
13	0.935	0.479	0.864
14	0.906	0.369	0.845
15	0.892	0.341	0.917
16	0.445	0.520	0.715
17	0.773	0.677	0.728
18	0.852	0.488	0.840
19	0.951	0.367	0.832
20	0.892	0.333	0.917
R	0.827	0.510	0.877

	Tab.7 Initia	lization of raw	data colum	ns
No.	$X_1(R_{ m h})$	$X_2(f_{cu}/\text{MPa})$	$X_3(N_1)$	$X_0(N_2)$
1	1.000	1.000	1.000	1.000
2	0.750	1.000	0.588	0.538
3	0.500	1.000	0.353	0.337
4	0.250	1.000	0.255	0.173
5	0.000	1.000	0.118	0.067
6	1.000	1.036	1.216	1.308
7	0.750	1.036	0.725	0.721
8	0.500	1.036	0.373	0.462
9	0.250	1.036	0.294	0.173
10	0.000	1.036	0.118	0.067
11	1.000	1.143	1.431	1.500
12	0.750	1.143	0.804	0.894
13	0.500	1.143	0.451	0.538
14	0.250	1.143	0.294	0.192
15	0.000	1.143	0.118	0.067
16	1.000	1.179	1.471	1.692
17	0.750	1.179	0.706	0.913
18	0.500	1.179	0.490	0.596
19	0.250	1.179	0.333	0.221
20	0.000	1.179	0.118	0.067

表 7 原始数据列初值化

Fig.8 Gray correlation coefficient

3 UHTC 终裂冲击寿命多因素预测模型

灰色关联分析表明,各因素对终裂寿命的影响 都较为显著;因此在建立终裂寿命多因素模型时需 要综合考虑各个因素的影响。

3.1 预测模型建立

根据冲击寿命与功能层厚度典型关系推导出

的冲击延性关于 UHTC 功能层相对厚度的关系式 (5),转化为终裂寿命关于 UHTC 功能层相对厚度 的关系式

$$N_2 = N_1 \left(\frac{1 + \frac{1}{a e^{-\beta H_r} + \frac{b}{c} e^{(\alpha - \beta) H_r}}}{\frac{1}{c} e^{-\beta H_r} + \frac{b}{c} e^{(\alpha - \beta) H_r}} \right)$$
(10)

又 $\beta = \alpha(1 - D_{impact})$ 。冲击劣化因子 D_{impact} 关于抗压强 度 f_{eu} 的回归曲线如图9所示, D_{impact} 关于抗压强度 f_{eu} 回归表达式为

$$D_{\text{impact}} = 5.373 \times 10^{-16} \text{e}^{0.199 f_{\text{cu}}} \tag{11}$$

将式(11)代入式(10)得到第一种终裂寿命预

测数学模型(Model_I)
$$N_{2}=N_{1}\left(1+\frac{1}{\mathrm{e}^{5.373\times10^{-h_{\mathrm{e}}^{0.199c}}\alpha H_{\mathrm{r}}}\left(\frac{a}{c}\mathrm{e}^{-\alpha H_{\mathrm{r}}}+\frac{b}{c}\right)}\right)$$
(12)

在 2.4 节中, 求得终裂寿命与初裂寿命的关系 表达式(7),关系式(7)在形式上比关系式(10)要更 加简单, 但其未考虑 UHTC 功能层相对厚度的影 响, 而初裂寿命在一定程度上也受到功能层厚度的 影响, 可由初裂寿命和抗压强度作为影响因素预 测预制桥面板 UHTC 功能梯度湿接缝的终裂寿 命。其中,与抗压强度 *f*_{eu} 有关的参数 *B* 的回归曲线 如图 10,由图可得到参数 *B* 的回归表达式为

$$B=0.259+0.012f_{\rm cu} \tag{13}$$

将式(13)代入式(7)得到第2种终裂寿命预测数学 模型,命名为 Model_Ⅱ

$$N_2 = (0.259 + 0.012 f_{\rm cu}) \times N_1 \tag{14}$$

3.2 预测模型的检验与分析

将本文中预制桥面板 UHTC 功能梯度湿接缝 的终裂寿命预测模型 Model Ⅰ和 Model Ⅱ计算得 到的预测值与湿接缝模型试件终裂寿命的试验值 分别进行对比分析,结果如图 11 所示。图中的横坐 标为模型试件终裂寿命的试验值,纵坐标分别为预 测模型 Model_ I 和 Model_ Ⅱ 计算得到的模型值, 实线为试验值和模型值等值的参考线,另两条虚线 表示变异系数为 0.3 并且置信度为 90%时磨损量模 型值的上限与下限。由图 11(a)得知,对于预测模型 Model I,试验数据点分布在上下限以内且十分接 近等值参考线,说明该预制桥面板 UHTC 功能梯度 湿接缝多因素计算模型能够较好地反映 UHTC 功 能层相对厚度、抗压强度以及初裂寿命的关系;而 对于预测模型 Model Ⅱ(图 11(b)),虽然在终裂寿 命较大,即湿接缝抗冲击能力较大时能够较好预测 终裂寿命的大小,但在终裂寿命比较小,即湿接缝 强度较弱时,模型值与试验值偏差较大。在实际桥 梁工程中,若已知 UHTC 功能梯度湿接缝强度较大 时,可用使用形式更加简单的预测模型 Model_ II 对 终裂寿命进行粗略的预测,但若要对 UHTC 功能梯 度湿接缝的终裂寿命较为精细一些的预测,可采用 吻合情况更加良好预测模型 Model_I。

此外经计算得知,终裂寿命预测模型 Model_I 和 Model_II 模型值与试验值的比值的均值分别为 μ_{l} =1.01, μ_{II} =1.24,标准差 σ_{l} =0.115 2, σ_{II} =0.383 6,变 异系数 δ_{l} =0.113 6, δ_{II} =0.309 7,这表明上述预制桥 面 UHTC 功能梯度湿接缝终裂寿命多因素计算模型 Model_ I 的预测精度较高,适用性良好,而 Model_ Ⅱ的精度较差,适用性也相对较差。

图 11 湿接缝终裂冲击寿命的试验值与模型值 Fig.11 Test value and model value of failure impact life of concrete

4 结论

采用落锤法研究了 UHTC 功能层厚度和 UHTC 抗压强度对预制桥面板 UHTC 功能梯度湿接缝的 抗冲击性能的影响规律,并结合试验数据建立破坏 寿命预测数学模型,得出如下结论。

1) UHTC 功能层的设置可明显改善素混凝土 湿接缝的抗冲击性能,使其由脆性破坏变为韧性破坏。冲击寿命可以表示为关于 UHTC 功能层相对 厚度的指数函数,并在此基础上提出了关于 UHTC 功能层相对厚度的湿接缝模型试件冲击延性预测 模型。 2) 对于 UHTC 功能层厚度相同的模型试件,其 A_k随着 UHTC 抗压强度的增大而增长,且增长幅度 随着 UHTC 抗压强度的增大而增大。此外,随着 UHTC 功能层相对厚度的增加 A_k的增长率越大。这 表明其 UHTC 功能层对湿接缝模型试件整体抗冲 击性能具有较好的增强效应。

 3)在抗压强度一定时,落锤法冲击试验得到的 终裂寿命可以表示为关于初裂寿命的线性函数。

4) 根据灰色关联分析,得到 3 种影响因素对终裂寿命的影响程度由强到弱排列为:N₁>H₂>f_{cc}>0.5,前两个关联度均大于 0.8,说明初裂寿命以及 UHTC 功能层相对厚度对终裂寿命的影响十分显著,其中 初裂寿命的影响最大。抗压强度的关联度为 0.510, 其对终裂寿命影响较为显著。

5) 基于冲击延性预测模型,推导出了UHTC 功能层相对厚度,抗压强度以及初裂寿命共同影 响下湿接缝模型试件的终裂寿命预测数学模型 Model_I。基于落锤法得到的初裂寿命与终裂寿命 线性相关性,推导出了抗压强度以及初裂寿命为影 响因素的湿接缝模型试件的终裂寿命预测数学模 型 Model_II。将试验值与模型值进行比较计算,得 出预制桥面 UHTC 功能梯度湿接缝终裂寿命多因 素计算模型 Model_I 的预测精度较高,适用性良 好,而 Model_II 的精度较差,适用性也相对较差。但 在实际桥梁工程中,若已知 UHTC 功能梯度湿接缝 强度较大时,可用使用形式更加简单的预测模型 Model_II 对终裂寿命进行粗略的预测,但若要对 UHTC 功能梯度湿接缝的终裂寿命较为精细一些的预 测,可采用吻合情况更加良好预测模型 Model_I。

参考文献:

- 张龙,唐盛华,卢江波.大跨斜交变截面宽箱连续梁桥裂 缝成因分析[J]. 华东交通大学学报,2020,37(6):46-50.
 ZHANG L,TANG S H,LU J B. Analysis on the causes of cracks in long-span skew variable cross-section wide box continuous girder bridge[J]. Journal of East China Jiaotong University,2020,37(6):46-50.
- [2] 申雁鹏,郭文龙,韩之江,等. 混凝土桥面板湿接缝纯弯破 坏行为试验研究[J]. 桥梁建设,2019,49(3):34-39.
 SHEN Y P,GUO W L,HAN Z J,et al. Experimental study on pure bending failure behavior of wet joint of concrete bridge deck[J]. Bridge Construction,2019,49(3):34-39.

- [3] 赵庆新,董进秋,潘慧敏,等. 玄武岩纤维增韧混凝土冲击 性能[J]. 复合材料学报,2010,27(6):120-125.
 ZHAO Q X,DONG J Q,PAN H M,et al. Impact behavior of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2010,27(6):120-125.
- [4] 孔祥清,何文昌,邢丽丽,等. 钢纤维-聚丙烯纤维混杂对 再生混凝土抗冲击性能的影响[J]. 复合材料学报,2020, 37(7):1763-1773.

KONG X Q,HE W C,XING L L,et al. Effect of steel fiberpolypropylene fiber hybrid additon on impact resistance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1763–1773.

 [5] 龚升,张武满,张劲松.橡胶颗粒-钢纤维混掺对碾压混凝 土抗冻性及抗冲击性能的影响[J].复合材料学报,2018,35
 (8):2199-2207.

GONG S,ZHANG W M,ZHANG J S. Frost resistance and impact properties of roller compacted concrete mixed with rubber particles and steel fibers[J]. Acta Materiae Compositae Sinica, 2018, 35(8):2199–2207.

[6] 赵燕茹,郝松,王磊,等.基于数字图像相关的钢纤维增强 水泥基复合材料的冲击损伤特性[J].复合材料学报,2018, 35(5):1325-1331.

ZHAO Y R, HAO S, WANG L, et al. Impact damage characteristics of steel fiber reinforced cement matrix composites based on digital image correlation[J]. Acta Materiae Compositae Sinica, 2018, 35(5); 1325–1331.

[7] 刘赛,朱德举,李安令,等.应变率和温度对耐碱玻璃纤维 织物增强水泥基复合材料弯曲力学行为的影响[J].复合材 料学报,2017,34(3):675-683.

LIU S,ZHU D J,LI A L,et al. Effects of strain rate and temperature on the flexural mechanical properties of alkali– resistant glass fabric reinforced cementitious matrix composite[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 675–683.

 [8] 高峰,郝贠洪,吴安利,等. 低模量聚酯纤维/水泥基复合 材料抗冲击性能及损伤机制 [J]. 复合材料学报,2021,38 (11):3838-3849.

GAO F,HAO Y H,WU A L,et al. Impact resistance and damage mechanism of low modulus polyester fiber/cement matrix composites[J]. Acta Materiae Compositae Sinica,2021, 38(11):3838–3849.

[9] 戎志丹,王亚利,孟亚奎. 超高性能水泥基复合材料抗多次冲击性能[J]. 东南大学学报(自然科学版),2020,50 (2):320-326.

RONG Z D, WANG Y L, MENG Y K. Multiple impact resistance of ultra-high performance cement-based composites[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(2): 320–326.

[10] 张雪梅,周美容.钢纤维和碳纤维的混合效应对高性能 混凝土力学性能的影响[J].功能材料,2021,52(1): 1208-1213.

ZHANG X M ZHOU M R. Influence of the mixing effect of steel fiber and carbon fiber on the mechanical properties of high performance concrete[J]. Journal of Functional Materials, 2021, 52(1):1208–1213.

- [11] TRABELSI A, KAMMOUN Z. Mechanical properties and impact resistance of a high-strength lightweight concrete incorporating prickly pear fibres[J]. Construction and Building Materials, 2020, 262:119972.
- [12] MURALI G, ABID S R, KARTHIKEYAN K, et al. Lowvelocity impact response of novel prepacked expanded clay aggregate fibrous concrete produced with carbon nano tube, glass fiber mesh and steel fiber[J]. Construction and Building Materials, 2021, 284; 122749.
- [13] 朱德举,李新亮,李安令. 经纬向纤维体积分数对耐碱玻璃纤维织物增强混凝土拉伸力学性能的影响[J]. 复合材料学报,2022,39(1):364-376.
 ZHU D J,LI X L,LI A L. Influence of warp and weft fiber volume fractions on tensile mechanical properties of alka-

li–resistant glass textile reinforced concrete[J]. Acta Materiae Compositae Sinica,2022,39(1):364–376.

[14] 薛国杰,王传林,张佳苗,等.钢纤维形状对高性能混凝 土性能的影响[J].复合材料学报,2021,38(12):4313-4314.

XUE G J, WANG C L, ZHANG J M, et al. Influence of steel fiber shape on the performance of high-performance concrete[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4313-4314.

[15] 王作虎,杨菊,崔宇强,等.碳纤维增强树脂复合材料加 固钢筋混凝土柱抗震性能的尺寸效应试验[J].复合材料 学报,2020,37(10):2645-2655.

WANG Z H, YANG J, CUI Y Q, et al. Experiment on the size effect of seismic behavior for reinforced concrete columns strengthened by carbon fiber reinforced plastics[J]. Acta Materiae Compositae Sinica, 2020, 37(10); 2645–2655.

- [16] CAO Y,LI P,BROUWERS H,et al. Enhancing flexural performance of ultra-high performance concrete by an op timized layered-structure concept[J]. Composites Part B, 2019,171:154-165.
- [17] GIACOMO T, MAR G F, JANET M. Functionally graded concrete: Design objectives, production techniques and analysis methods for layered and continuously graded ele-

ments[J]. Construction and Building Materials, 2020, 242: 1–15.

- [18] JEFFERY R, GLAUCIO P, CRISTIAN G, et al. Fracture behavior of functionally graded concrete materials for rigid pavements[J]. Transportation Research Record, 2007, 2037 (1):40–49.
- [19] MAHAN G N, MOHAMMAD M, MOHAMMAD K S, et al. Flexural performance of functionally graded RC cross-section with steel and PP fibres[J]. Magazine of Concrete Research, 2014, 66(5):219–233.
- [20] LINN G N, JAN A V. Structural behaviour of layered beams with fibre-reinforced LWAC and normal density concrete[J]. Springer Netherlands, 2016, 49(1):689-703.
- [21] LI Q H,XU S L Experimental investigation and analysis on flexural performance of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites[J]. Science in China Series E: Technological Sciences, 2009, 52(6): 1648–1664.
- [22] PENG K K, YAN B F. Experimental study of the flexural behaviour of ultra-high-performance concrete beam with wet joint[J]. Magazine of Concrete Research, 2020, 74(2): 1-11.
- [23] 申雁鹏,郭文龙,韩之江,等. 混凝土桥面板湿接缝纯弯 破坏行为试验研究[J]. 桥梁建设,2019,49(3):34-39.
 SHEN Y P,GUO W L,HAN Z J,et al. Experimental study on pure bending failure behavior of wet joint of concrete bridge deck[J]. Bridge Construction,2019,49(3):34-39.
- [24] 李宏江,王岐峰,卢达义. 在役 PC 斜拉桥主梁湿接缝的 破坏机制分析[J]. 工程力学,2012,29(S2):210-215.
 LI H J,WANG Q F,LU D Y. Analysis on failure mechanism of wet joints in the boxgirder of anxisting pc cable-stayed bridge[J]. Engineering Mechanics,2012,29(S2): 210-215.
- [25] 工程建设协会. 纤维混凝土试验方法标准:CECS 13-2009[S]. 北京:中国计划出版社,2010.

ENGINEERING AND CONSIRUCTION ASSOCIATION. Standard test methods for fiber reinforced concrete; CECS 13–2009[S]. Beijing; China Planning Publishing House, 2010.

- [26] ZHU X C, ZHU H, LI H R. Drop-weight impact test on Ushape concrete specimens with statistical and regression analyses[J]. Materials, 2015, 8(9):5877–5890.
- [27] 邓聚龙. 灰色系统基本方法[M]. 武汉:华中理工大学出版社,1987.

DENG J L. The Basic Method of Grey System[M]. Wuhan: Huazhong University of Science and Technology Press, 1987.

第一作者:梅若诗(1995—),女,硕士研究生,研究方向为桥梁结构材料及其耐久性。E-mail:471741826@qq.com。

通信作者:王凯(1975—),男,教授,硕士生导师,研究方向为 混凝土结构耐久性及提升技术。E-mail:kwanglab_1@sina. com。

(责任编辑:姜红贵)