文章编号:1005-0523(2023)06-0017-08

基于 NSM 分析双线隧道下穿对既有隧道影响

江思岑,柴天建,颜建伟

(华东交通大学土木建筑学院,江西 南昌 330013)

摘要:为探究新建双线隧道下穿对既有盾构隧道纵向位移的影响,采用 Pasternak 双参数弹性地基及 Euler-Bernoulli 梁模型, 考虑新建隧道与既有隧道轴线夹角以及隧道开挖引发土体损失等因素,通过 Loganathan-Poulos 解和叠加原理计算新建双线 隧道开挖引起周围土体自由场坚向位移,基于零空间法对既有隧道沉降变形进行求解。以深圳地铁9号线下穿地铁4号线为 工程背景,将现场实测数据与零空间法的结果进行对比,进一步分析双线隧道水平距离、土体损失、新旧隧道轴线间夹角以及 新建隧道埋深对隧道沉降的影响。结果表明:新建隧道双线间距在其外径7倍范围内时对既有隧道沉降影响显著,沉降量随间 距增大而减小,沉降范围随间距增大而增大,沉降形态由"V"型向"W"型转变。当间距大于7倍新建隧道外径,沉降量与沉降形 态均趋于稳定。此外,土体损失、新旧隧道夹角及新建隧道埋深对沉降的影响显著,沉降量随土体损失增大而增大,随新旧隧道 夹角和新建隧道埋深的增大而减小。

关键词:双线隧道下穿;既有隧道;零空间法;隧道沉降

中图分类号:U455 文献标志码:A

本文引用格式:江思岑,柴天建,颜建伟. 基于 NSM 分析双线隧道下穿对既有隧道影响[J]. 华东交通大学学报,2023,40(6):17-24. DOI:10.16749/j.cnki.jecjtu.20230508.016

Effects of New Twin Underneath Tunneling on Existing Tunnels Based on NSM Study

Jiang Sicen, Chai Tianjian, Yan Jianwei

(School of Civil Engineering and Architeoture, East China Jiaotong University, Nanchang 330013, China)

Abstract: In order to investigate the effects of new twin tunneling on the longitudinal displacement of existing shield tunnel, Pasternak double parameters of the elastic foundation and Euler-Bernoulli beam model is employed to consider the new tunnel, existing tunnel skew angle and the tunnel excavation causing factors such as ground loss. The new double line tunnel excavation caused by free field vertical displacement of surrounding soils is determined by Loganathan-Poulos solution and superposition principle, and null space method is used to calculate the settlement deformation of the existing tunnel. Taking Shenzhen Metro Line 9 passing under Metro Line 4 as an example, the predicted results by the null space method is compared with the field-measured data. The effect of horizontal distance, ground loss, skew angle and depth of the new tunnel on existing tunnel settlement is further analyzed. The results show that the distance between the two lines of the new tunnel significantly affects the settlement of the existing tunnel in a range of 7 times its outer diameter. The settlement decreases with the increase of the distance, the settlement domain increases as the distance increases. The settlement pattern changes from "V" to "W". When the distance is larger than 7 times the outer diameter of the new tunnel, the settlement and pattern tend to be stable. In addition, ground loss, skew angle and the depth of the new tunnel is method.

收稿日期:2023-02-28 基金项目:国家自然科学基金项目(12072112) nel significantly influences the settlement. It increases with the increase of ground loss, and decreases with the skew angle and the depth of the new tunnel.

Key words: twin underneath tunneling; existing tunnel; null space; tunnel settlements

Citation format: JIANG S, CHAI T J, YAN J W. Effects of new twin underneath tunneling on existing tunnels based on NSM study[J]. Journal of East China Jiaotong University, 2023, 40(6): 17–24.

随着城市轨道交通的快速发展,地下空间中隧 道间的交叉不可避免^[1-2],双线隧道下穿既有隧道施 工工程日益增多,为确保既有隧道的运营安全,进 行对隧道下穿施工引起既有隧道沉降预测问题的 研究十分重要^[3-5]。

目前,国内外学者对新建隧道穿越既有隧道工 程方面展开大量研究,取得了丰硕的成果,一般采 用数值模拟^[6-9]、模型试验^[10]以及理论解析^[11-13]等方 法。胡秋斌^[14]通过三维有限元数值模拟,分析了新建 盾构隧道既有暗挖隧道的受力变形状态。张治国 等^[15]基于位移控制 Schwarz 交替法和复变函数理论, 提出了双线盾构隧道在任意布置方式下开挖引起 周围地层变形的计算方法。于霖等临将既有隧道简 化成 Pasternak 地基模型上的 Euler-Bernoulli 梁,基 于两阶段法分析既有隧道力学响应。蔡光伟等印基 于当层法原理,考虑既有隧道与新建隧道轴线间夹 角对沉降的影响,结合既有结构的刚度分析,推导 出隧道斜交下穿既有隧道在任意地层沉降变形曲 线计算公式。Li 等[18]考虑剪切效应,将 Timoshenko 梁模型运用到隧道变形分析中,发现大直径盾构隧 道的剪切效应更为明显且适用。冯国辉等四在新建 隧道下穿既有隧道引起的隧-土相互作用时,采用 修正的高斯公式解得土体自由位移,将既有隧道简 化成 Kerr 地基模型上的 Euler-Bernoulli 梁,求得既 有隧道受力变形解析解,分析了新旧隧道夹角、地 层损失率及新建隧道埋深变化对既有隧道变形响 应的影响。结果表明:新建隧道地层损失率增大,既 有隧道沉降增大;新旧隧道轴线夹角、高差的增大, 既有隧道沉降减小。

本文基于零空间法(Nullspace Method),对计算 步骤进行简化,与深圳地铁9号线下穿地铁4号线 实测数据进行对比,进一步研究新建双线隧道间距 与土体损失对既有隧道沉降变形影响,可为实际工 程设计与施工提供理论参考。

1 基本计算方程建立

1.1 既有隧道纵向沉降

既有隧道假定为 Pasternak 双参数地基上具有 等效纵向抗弯刚度 E_eI_e 的 Euler-Bernoulli 梁,其微 分控制方程为

$$E_{e}I_{e}\frac{d^{4}w(x)}{dx^{4}} - GD_{0}\frac{d^{2}w(x)}{dx^{2}} + kD_{0}w(x) = q(x)D_{0} \qquad (1)$$

式中:w(x)为既有隧道的位移函数;G为弹性地基 剪切层参数;EJ。为既有隧道等效纵向抗弯刚度; q(x)为土体自由场竖向位移产生的荷载;D。为既有 隧道外径;k 为地基弹性系数。

控制方程式(1)两边乘以位移并对全长积分得

$$\int_{I} \left[E_{e}I_{e} \left(\frac{\mathrm{d}^{2}w(x)}{\mathrm{d}x^{2}} \right)^{2} + GD_{0} \left(\frac{\mathrm{d}w(x)}{\mathrm{d}x} \right)^{2} + kD_{0}w_{(x)}^{2} \right] \mathrm{d}x = \int_{I} q(x)D_{0}w_{(x)}\mathrm{d}x$$
(2)

式中:1为既有隧道全长。

隧道件自由放置在土体中,端部弯矩和剪力为0, 边界条件数学描述如下

$$\begin{vmatrix} \frac{\mathrm{d}^2 w(x)}{\mathrm{d}x^2} \Big|_{x=0} = 0 \\ \frac{\mathrm{d}^2 w(x)}{\mathrm{d}x^2} \Big|_{x=1} = 0 \\ \frac{\mathrm{d}^3 w(x)}{\mathrm{d}x^3} \Big|_{x=0} = 0 \\ \frac{\mathrm{d}^3 w(x)}{\mathrm{d}x^3} \Big|_{x=1} = 0 \\ \vdots = 0$$

假设位移函数 w(x)

$$w(x) = \sum_{i=1}^{n} f_i(x) \alpha_i \tag{4}$$

式中:基函数f采用正弦和余弦函数组合; α_i 是对应的权重系数。

$$\begin{cases} f_i(x) = \sin\left(\frac{i\pi x_i}{l}\right) & n < 5\\ f_n(x) = \cos\left(\frac{(i-5)\pi x_i}{l}\right) & n \ge 5 \end{cases}$$
(5)

(C)1994-2024 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

据此,式(2)转化为 $\int_{L} \left[E_{e} J_{e} \frac{\mathrm{d}^{2} \boldsymbol{f}^{\mathrm{T}}}{\mathrm{d}x^{2}} \frac{\mathrm{d}^{2} \boldsymbol{f}}{\mathrm{d}x^{2}} + G D_{0} \frac{\mathrm{d} \boldsymbol{f}^{\mathrm{T}}}{\mathrm{d}x} \frac{\mathrm{d} \boldsymbol{f}}{\mathrm{d}x} + k D_{0} \boldsymbol{f}^{\mathrm{T}} \boldsymbol{f} \right] \mathrm{d}x \boldsymbol{\alpha}^{\mathrm{T}} = \int_{L} q(x) D_{0} \boldsymbol{f}^{\mathrm{T}} \mathrm{d}x$ (6)

边界条件式(3)转换为

$$\begin{bmatrix} f_{1}^{(2)} \\ x=0, f_{2}^{(2)} \\ x=1, f_{2}^{(2)} \\ x=1, f_{2}^{(2)} \\ x=1, f_{2}^{(3)} \\ x=1, \dots, f_{n}^{(3)} \\ x=1 \end{bmatrix}_{x=1} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix}_{n \times 1} = 0$$
(7)

记

$$\begin{split} & := \begin{bmatrix} f_1^{(2)} \Big|_{x=0}, f_2^{(2)} \Big|_{x=0}, \cdots, f_n^{(2)} \Big|_{x=0} \\ & f_1^{(2)} \Big|_{x=l}, f_2^{(2)} \Big|_{x=l}, \cdots, f_n^{(2)} \Big|_{x=l} \\ & f_1^{(3)} \Big|_{x=0}, f_2^{(3)} \Big|_{x=0}, \cdots, f_n^{(3)} \Big|_{x=0} \\ & f_1^{(3)} \Big|_{x=0}, f_2^{(3)} \Big|_{x=0}, \cdots, f_n^{(3)} \Big|_{x=0} \\ & f_1^{(3)} \Big|_{x=l}, f_2^{(3)} \Big|_{x=l}, \cdots, f_n^{(3)} \Big|_{x=l} \end{bmatrix}_{4 \times n} \end{split}$$

引入参数 P、KL,令

$$P = \int_{L} q(x) D_0 f^{\mathrm{T}} \mathrm{d}x \tag{9}$$

$$K_{L} = \int_{L} \left[E_{J_{e}} \frac{\mathrm{d}^{2} f^{\mathrm{T}}}{\mathrm{d}x^{2}} \frac{\mathrm{d}^{2} f}{\mathrm{d}x^{2}} + G D_{0} \frac{\mathrm{d} f^{\mathrm{T}}}{\mathrm{d}x} \frac{\mathrm{d} f}{\mathrm{d}x} + k D_{0} f^{\mathrm{T}} f \right] \mathrm{d}x (10)$$

联立式(2)~式(10)可得

$$K_{l}\alpha^{\mathrm{T}}=P$$

$$M\alpha^{\mathrm{T}}=0$$
(11)

式中:K_L为土体刚度矩阵;M 为边界条件约束矩 阵;P 为新建双线隧道施工引发的土体位移荷载; f 是 f 的矢量形式。从式(11)上式可以发现初始 假设的场函数与边界约束无关,解决了边界条件 对场函数选择的限制问题;式(11)下式是边界条 件对场函数权重系数选择的限制,即权重系数存 在线性相关,称为零空间法。通过 MATLAB 零空 间法 Z=null (M) 解出约束矩阵 M 的零空间解 集,有

$$\boldsymbol{\alpha}^{\mathrm{T}} = \mathbf{Z} \boldsymbol{\xi}^{\mathrm{T}}$$
(12)

左右两侧同乘以 Z^T, 土体刚度矩阵 K_L转变为满秩 矩阵

$$\boldsymbol{K}_{\text{new}} = \boldsymbol{Z}^{\mathrm{T}} \boldsymbol{K}_{L} \boldsymbol{Z}$$
(13)

荷载表示为

$$\boldsymbol{P}_{\text{new}} = \boldsymbol{Z}^{\mathrm{T}} \boldsymbol{P} \tag{14}$$

据此可计算出系数
$$\xi$$
和权重系数 α
 $\xi^{T} = P_{new}/K_{new}$ (15)

1.2 土体自由场竖向位移

1998年,Loganathan^[20]提出自由土体竖向位移 半解析式,本文用于计算隧道开挖对周围土体及既 有构筑物作用。依据该方法,第一、二条隧道开挖引 起的土体自由场竖向位移 U₁(x)和 U₂(x)分别为

$$U_{1}(x) = R^{2} \varepsilon_{1} e^{\left(-\left[\frac{1.38\left[(x-L/2)\sin a\right]^{2}}{(H_{1}+R)^{2}}+\frac{0.69z^{2}}{H_{1}^{2}}\right]\right)} \cdot \left\{-\frac{z-H_{1}}{\left[(x-L/2)\sin a\right]^{2}+(z-H_{1})^{2}} - \frac{2z\left[(x-L/2)\sin a\right]^{2}-(z+H_{1})^{2}}{\left[(x-L/2)\sin a\right]^{2}+(z+H_{1})^{2}} + \frac{2z}{\left[(x-L/2)\sin a\right]^{2}+(z+H_{1})^{2}}\right\}} \quad (16)$$

$$U_{2}(x) = R^{2} \varepsilon_{2} e^{\left(-\left[\frac{1.38\left[(x+L/2)\sin a\right]^{2}}{(H_{1}+R)^{2}}+\frac{0.69z^{2}}{H_{2}^{2}}\right]\right)} \cdot \left\{-\frac{z-H_{2}}{\left[(x+L/2)\sin a\right]^{2}+(z-H_{2})^{2}} - \frac{2z\left[(x+L/2)\sin a\right]^{2}-(z+H_{2})^{2}}{\left[(x+L/2)\sin a\right]^{2}+(z-H_{2})^{2}} + \frac{2z\left[(x+L/2)\sin a\right]^{2}+(z+H_{2})^{2}}{\left[(x+L/2)\sin a\right]^{2}+(z+H_{2})^{2}}\right\} \quad (17)$$

式中:R 为新建隧道的开挖半径;L 为双线隧道轴线 之间的水平距离;ɛ₁,ɛ₂分别为第一条隧道和第二条 隧道开挖时引起的土体损失。计算模型图如图1所 示,图中z为既有隧道轴线埋深;H₁,H₂分别为第一、 第二条隧道轴线埋深;v 为土体泊松比;a 为新建隧道 轴线与既有隧道轴线之间的夹角。依据叠加原理可知 双线隧道开挖引起的土体自由场竖向位移 U(x)为

$$U(x)=U_1(x)+U_2(x)$$
 (18)
 H_2
 H_2
 D_0
 $Cround Loss$
Soil spring
 $Ground Loss$
 $First tunnel$
 B 1 计算模型示意图
Fig.1 Diagram of the calculating model

1.3 土体损失

新建双线盾构隧道施工过程中,第二条隧道开 挖引发的土体损失大于第一条开挖的隧道,其原因 是第一条隧道的开挖会对周围土体造成扰动。双线 隧道间距越小,土体损失差值越大;反之间距越大, 差值越小。据 Jin 等^[21]整理的实验数据可知,双线隧 道土体损失满足以下关系

$$\varepsilon_2 = \varepsilon_1 \Big[\frac{1+e^{\left(-c\frac{L}{D}\right)}}{1+e^{\left(-c\frac{L}{D}\right)}} \Big]$$
(19)

式中:c为开挖扰动系数;D为新建隧道外径。

1.4 剪切层参数及地基基床系数

基于 Tanahashi 等^[22]给定的 Pasternak 地基模型 剪切层参数 G 如下

$$G = \frac{E_{\rm s}t}{6(1+v)} \tag{20}$$

式中: E_s 为土体弹性模量; t 为土体剪切层厚度, 依据徐凌^[23]研究, t 的取值为

$$t=2.5D_0$$
 (21)

根据 Vesic^[24]提出的经验公式及 Attewell 等^[25]的 修正, 俞剑等^[26]考虑到地基弹性系数受埋深深度的 影响, 在此基础上引入深度参数 η, 完善后的地基弹 性系数 k 的计算公式为

$$k = \frac{3.08E_{\rm s}}{\eta D_0 (1-v^2)} \sqrt[8]{\frac{E_{\rm s} D_0^4}{E_{\rm e} I_{\rm e}}}$$
(22)

$$\eta = \begin{cases} 2.18z/D_0 \le 0.5\\ 1 + \frac{1}{1.7z/D_0} z/D_0 > 0.5 \end{cases}$$
(23)

2 算例验证

选取深圳地铁9号线下穿既有地铁4号线工程²⁷¹ 为例对本文零空间法进行验证。该工程剖面图与平面 图分别如图2,图3所示,其中为既有隧道内径。新旧 隧道夹角为83°,轴线埋深分别为20.5m和12.0m,其 余参数参考甘晓露等²⁸¹取值,如表1所示。

图 3 既有隧道及新建隧道平面图 Fig.3 The plan view of the existing and new tunnels

表 1 隧道计算参数 Tab.1 Tunnel calculation parameters

E _e / GPa	$E_{\rm s}$ / GPa	С	v	${\cal E}_1$	α	
34.5	62.5	0.65	0.3	0.5%	83°	

零空间法计算结果与工程实测数据的对比情况如图 4 所示。由图 4 可知,零空间法呈现规律与 实测基本一致,线性吻合,两条隧道发生沉降的范 围均与实际测得范围相符。实测第一条隧道的最大 沉降变形为 5.34 mm,预测最大沉降变形为 5.67 mm; 第二条隧道的最大沉降变形为 6.93 mm,预测最大 沉降变形为 6.72 mm,预测结果与实测值吻合,且最 大沉降处坐标位置相同。由于第一条隧道开挖后存 在土体扰动现象,造成第二条隧道的土体损失率增 大,因此第二条隧道开挖引发的纵向位移明显大于 第一条隧道开挖,预测结果与工程实测数据依然吻 合的很好,再次证实了本方法的准确性。

3 参数分析

考虑不同物理参数变化对既有隧道纵向位移的影响,采用前文建立的模型基础及参数,分别改 变新建隧道间距L,土体损失 ε_1 ,新旧隧道轴线夹角 a以及新建隧道埋深 H_1 ,进行计算分析,研究隧道沉 降规律。

3.1 新建隧道间距 L 变化对既有隧道沉降影响

为探究新建隧道两线间距离 *L* 对既有隧道纵 向位移的影响,研究新建隧道外径 *D* 的 10 倍范围 内的影响规律,计算结果如图 5 所示。

从图 5 可以看出,增大新建隧道两线间距,既 有隧道沉降形态由"V"形变化为"U"形进而转变为 "W"形。随着间距的增大,沉降范围扩大,既有隧道 纵向沉降不断减小。继续增大间距,双线隧道间影 响越来越弱,沉降形态趋于稳定,呈近乎标准的 "W"形,第一条隧道开挖与第二条隧道开挖所引发 既有隧道的纵向位移几乎相等,即两条隧道的开挖 无相互影响。如图 6 所示,从右至左分别为新建隧

Fig.6 Maximum settlement with different tunnel distance

道间距 L 为 D~10D 的既有隧道最大竖向位移,可 知近距离的双线开挖会引发较大的沉降,易对实际 工程产生很大风险。在施工合理范围内,适当增大 双线间距离能有效减少沉降,间距在 7 倍新建隧道 外径范围中,沉降由 12.69 mm 减至 5.70 mm,该减 少沉降方法效果显著。大于 7 倍外径后,双线隧道 间干扰甚微,沉降量稳定在 5.70 mm 左右。

3.2 土体损失 ϵ_1 变化对既有隧道沉降影响

控制其它参数不变,取 5 组土体损失 ε_1 研究其 对既 有 隧 道 纵 向 位 移 的 影 响 , 分 别 为 0.25% , 0.50% ,1.00% ,1.50% 和 2.00% , 计算结果如图 7 和 图 8 所示。由图 7 可知,随着土体损失 ε_1 增大,既有 隧道沉降范围无明显变化,纵向位移最大值增大, 由 4.79 mm 变化为 38.30 mm。由图 8 可知,在离既 有隧道模型中点特定位置处的纵向位移也是随土 体损失 ε_1 增大而增大。此外,随着土体损失率的增 加,所受附加应力呈线性增加,因此距离中点处 0,20 m 处的纵向变形亦呈现近似线性变化。显然,

在实际工程中减小土体损失是控制隧道沉降的重 要举措之一。

3.3 新旧隧道夹角 a 变化对既有隧道沉降影响

取 6 组不同新旧隧道夹角 a 分析其对既有隧 道沉降变形的影响,分别为 15°,30°,45°,60°,75°, 90°,计算结果如图 9 与图 10 所示。由图 9 可知,随 着新旧隧道轴线夹角的增大,既有隧道沉降范围变 窄,且纵向位移减小。当新旧隧道轴线夹角为 15° 时,既有隧道模型在-80~80 m 范围内均存在明显 沉降,发生沉降的范围很广且沉降量大,最大沉降 值达 14.46 mm;当新旧隧道轴线夹角为 90°时,主 要沉降范围集中在-40~40 m 之间,最大沉降减小 为 9.53 mm。其原因为新旧隧道间相交范围变小(如 图 11),相交形态由近乎"重合"向正交形态转变,作 用范围减小。由图 10 可知,既有隧道最大竖向位移 在 15°~45°近乎线性变化,继续增大新旧隧道轴线 夹角,既有隧道沉降变化速率减缓。因此,在工程设 计中,在实际工况允许的情况下尽量将新建隧道与

图 11 新旧隧道相交示意图 Fig.11 Diagram of relative position between existing tunnel and new tunnel

既有隧道设计为正交形式,能够大幅度缩小既有隧 道发生沉降的区间且减小最大纵向位移,降低工程 施工风险。

3.4 新建隧道埋深 H₁变化对既有隧道沉降影响

为探究新建隧道在不同埋深深度下对既有隧 道沉降变形的影响,本文取6组埋深进行计算分析, 取值分别为:20,22,24,26,28,30 m,计算结果如图 12 和图13 所示。如图所示,当埋深为20 m时,沉降 曲线窄而深,沉降主要发生在-40~40 m范围内,最

new tunnel

大沉降为 9.63 mm;当埋深为 30 m 时,沉降范围扩 大,主要沉降区间为-60~60 m,最大沉降为 8.09 mm。 因此在实际工程设计与施工中,应当综合考虑沉降 范围与最大沉降的影响,权衡出最为安全且经济的 施工方案。

4 结论

1) 双线隧道水平间距增加在其外径 1~7 倍范 围内可以有效控制既有隧道沉降,沉降形态由最初 的"V"形变化为"U"形进而转变为"W"形。超过 7 倍 后,沉降形态趋于稳定且标准的"W"形,沉降量也 保持稳定。

2)既有隧道沉降变形会随着土体损失增大,沉
 降范围无明显变化,最大纵向位移呈线性变化。

 3)随着新旧隧道轴线夹角增大,既有隧道发生 沉降的范围变窄,最大纵向位移减小。

4)随着新建隧道埋深的增大,既有隧道最大纵向位移减小,沉降范围变广。

参考文献:

- [1] 阮承志,石海斌,于万友,等. 盾构上穿既有隧道影响及 加固分析[J]. 华东交通大学学报,2022,39(3):54-60.
 RUAN C Z,SHI H B,YU W Y,et al. Analysis of the influence and reinforcement of shield passing through existing tunnel[J]. Journal of East China Jiaotong University,2022, 39(3):54-60.
- [2] 方晓慧,王星华. 盾构隧道近距离正交下穿复杂地下结构的影响分析[J]. 铁道科学与工程学报,2014,11(1):60-66.
 FANG X H,WANG X H. The impact analysis of shield tunnel close undercrossing complex underground structure
 [J]. Journal of Railway Science And Engineering,2014,11 (1):60-66.
- [3] 程茜,宫全美.地铁盾构隧道下穿城市公园地基加固宽度 分析[J]. 华东交通大学学报,2018,35(3):15-22.
 CHEN X,GONG Q M. Analysis on the width of foundation reinforcement of Metro shield tunnel under city park[J]. Journal of East China Jiaotong University,2018,35(3):15-22.
- [4] 黎春林,张际鑫. 盾构隧道施工临近建筑物风险等级评估 方法[J]. 华北水利水电学院学报(自然科学版),2020,41 (5):40-45.

LI C L,ZHANG J X. Study on the methods for risk grade assessment of buildings adjacent to shield tunnel construction[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition),2020,41(5): 40–45.

- [5] 陈先国,高波.地铁近距离平行隧道有限元数值模拟[J]. 岩石力学与工程学报,2002,21(9):1330-1334. CHEN X G,GAO B. 2D FEM numerical simulation for closely-spaced parallel tunnels in metro[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(9):1330-1334.
- [6] 汪洋,何川,曾东洋,等. 盾构隧道正交下穿施工对既有隧 道影响的模型试验与数值模拟[J]. 铁道学报,2010,32 (2):79-85.

WANG Y, HE C, ZENG D Y, et al. Model test and numerical simulation of influence of perpendicular undercross shield tunnel construction on existing tunnel[J]. Journal of The China Railway Society, 2010, 32(2):79–85.

[7] 张治国,师敏之,张成平,等.类矩形盾构隧道开挖引起邻近地下管线变形研究[J].岩石力学与工程学报,2019,38
 (4):852-864.

ZHANG Z G, SHI M Z, ZHANG C P, et al. Research on deformation of adjacent underground pipelines caused by excavation of quasi-rectangular shields[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4):852–864.

- [8] AVGERINOS V,POTTS D M,STANDING J R. Numerical investigation of the effects of tunnelling on existing tunnels
 [J]. Tunnelling in the Urban Environment,2018,91:91–105.
- [9] 卢华喜,王漪璇,周珍伟,等. 盾构隧道下穿铁路股道及火车站站房的影响分析[J]. 华东交通大学学报,2015,32(4): 25-32.

LU H X, WANG Y X, ZHOU Z W, et al. Analysis on the influence of shield tunnel under railway stock track and railway station building[J]. Journal of East China Jiaotong University, 2015, 32(4):25–32.

- [10] SHI J, YU W, NG C. Three-dimensional centrifuge modeling of ground and pipeline response to tunnel excavation [J]. Journal of Geotechnical & Geo-environmental Engineering, 2016, 142(11):4016054.
- [11] 梁荣柱,宗梦繁,康成,等.考虑隧道剪切效应的隧道下 穿对既有盾构隧道的纵向影响[J]. 浙江大学学报(自然 科学版),2018,52(3):420-472.
 LIANG R Z,ZONG M F,KANG C, et al. Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect[J].
 Journal of Zhejiang University(Natural Science Edition), 2018,52(3):420-472.
- [12] 可文海,管凌霄,刘东海,等. 盾构隧道下穿管道施工引起的管-土相互作用研究[J]. 岩土力学,2020,41(1):
 221-228.

KE W H,GUAN L X,LIU D H,et al. Research on upper pipeline-soil interaction induced by shield tunnelling[J]. Rock and Soil Mechanics,2020,41(1):221-228.

[13] LIANG L,XU C,ZHU B,et al. Theoretical method for an elastic infinite beam resting on a deformable foundation with a local subsidence[J]. Computers and Geotechnics, 2020, 127:103740.

[14] 胡秋斌.双线盾构隧道下穿对既有暗挖大断面隧道影响的数值分析[J].华北水利水电大学学报(自然科学版), 2023,44(1):84-92.

HU Q B. Numerical analysis of the influence of double line shield tunneling on existing large section mined tunnel [J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition),2023,44(1): 84–92.

[15] 张治国,张成平,奚晓广.双线隧道不同布置方式下相互 作用影响的地层位移解析[J]. 岩土工程学报,2019,41(2): 262-271.

ZHANG Z G,ZHANG C P,XI X G. Closed solutions to soil displacements induced by twin-tunnel excavation under different layout patterns[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2):262–271.

[16] 于霖,李宇杰,王晓军,等.考虑隧道掘进过程的新建隧 道下穿既有隧道力学响应研究[J].铁道标准设计,2022, 68(3):1-14.

YU L,LI Y J,WANG X J,et al. Mechanical Responses of Existing Tunnel to New Tunnel Down-crossing Excavation Considering Tunnelling Process[J]. Railway Standard Design, 2022,68(3):1–14.

 [17] 蔡光伟,刘振兴,钟可,等.新建隧道斜交下穿既有隧道 变形预测模型研究[J].交通科学与工程,2022,38(4): 65-71.

CAI G W,LIU Z X,ZHONG K,et al. Study on deformation prediction model of the existing tunnel obliquely crossed by new tunnel[J]. Journal of Transport Science And Engineering, 2022,38(4):65–71.

- [18] LI P, DU S J, SHEN S L, et al. Timoshenko beam solution for the response of existing tunnels because of tunneling underneath[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(5):766–784.
- [19] 冯国辉,徐长节,郑茗旺,等. 新建隧道下穿既有隧道引起的隧-土相互作用研究[J]. 工程力学,2023,40(5):59-68.
 FENG G H,XU C J,ZHENG M W, et al. Study of tunnel-soil

interaction induced by tunneling underlying[J]. Engineering Mechanics, 2023, 40(5): 59–68.

- [20] LOGANATHAN N. Analytical prediction for tunnelinginduced ground movements in clays[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1998, 124(9):846–856.
- [21] JIN D, SHEN X, YUAN D. Theoretical analysis of threedimensional ground displacements induced by shield tunneling[J]. Applied Mathematical Modelling, 2020, 79: 85–105.
- [22] TANAHASHI H. Formulas for an infinitely long Bernoulli– Euler beam on the Pasternak model[J]. Journal of the Japanese Geotechnical Society, 2004, 44(5):109–118.

[23] 徐凌. 软土盾构隧道纵向沉降研究[M]. 上海:同济大学, 2005.

XU L. Study on the longitudinal settlement of shield tunnel in soft soil[M]. Shanghai: Tongji University, 2005.

- [24] VESIC A B. Bending of beams resting on isotropic elastic solid[J]. Journal of the Engineering Mechanics Division, 1961,87(2):35-53.
- [25] ATTEWELL P B, YEATES J, SELBY A R. Soil movements induced by tunnelling and their effects on pipelines and structures[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 1987, 24(4): 163.
- [26] 俞剑,张陈蓉,黄茂松. 被动状态下地埋管线的地基模量
 [J]. 岩石力学与工程学报,2012,31(1):123-132.
 YU J,ZHANG C R,HUANG M S. Subgrade modulus of underground pipelines subjected to soil movements[J].
 Chinese Journal of Rock Mechanics and Engineering, 2012,31(1):123-132.
- [27] JIN D,YUAN D,LI X, et al. An in-tunnel grouting protection method for excavating twin tunnels beneath an existing tunnel[J]. Tunnelling & Underground Space Technology, 2018,71:27-35.
- [28] 甘晓露,俞建霖,龚晓南,等.新建双线隧道下穿对既有 盾构隧道影响研究[J]. 岩石力学与工程学报,2020,39 (S2):3586-3594.

GAN X L,YU J L,GONG X N,et al. Effects of twin tunneling underneath on existing shield tunnels[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39 (S2):3586–3594.

第一作者:江思岑(1999—),男,硕士研究生,研究方向为地 铁盾构隧道施工技术。E-mail:359850694@qq.com。

通信作者:颜建伟(1986—),男,教授,博士,博士生导师,研究 方向为材料结构多尺度演化。E-mail;jianwei@mail.ustc.edu.cn。

(责任编辑:姜红贵)