Vol. 22 No. 1 Feb., 2005

文章编号:1005-0523(2005)01-0145-04

关于图的符号 k-控制数

徐保根

(华东交通大学 基础科学学院,江西 南昌,330013)

摘要:给出了n 阶连通图的符号k-控制数的一个下界,指出了此下界是最好可能的.并确定了所有完全二部图的符号k-控制数.

关键词:符号控制函数;符号控制数; k-符号控制函数; k-符号控制数

中图分类号:0157.5

文献标识码:A

1 引 言

本文所指的图均为无向简单图,文中未说明的符号和术语同于文献[2、7].

设 G=(V,E) 为一个图,其顶点集 V=V(G) 和边集 E=E(G),对于任意 $u \in V(G)$,则 $N_G(u)$ 为 u 点在 G 中的邻域, $N_G[u]=N_G(u)\bigcup \{u\}$ 为 u 点在 G 中的闭邻域,在不混淆情况下, $N_G(u)$ 和 $N_G[u]$ 可分别简记为 N(u)和 N[u]. 若 A, $B\subseteq V$,则记 $E(A,B)=\{u\in E\mid u\in A,v\in B\}$.

对于一个实值函数 $f: V \to R$ 和一个子集 $S \subseteq V$,则记 $f(S) = \sum_{u \in S} f(u)$ 对于任意 $v \in V(G)$,则 f(N[v]) 可简记为 f[v] 此外,f(v) 称为 v 点在 f 下的标号,|G|表示图 G 的阶。

定义 $1[1\sim2]$ 设 G=(V,E)为一个图, k 一个整数($1\leq k\leq |G|$),一个双值函数 $f:V \to \{-1,1\}$ 如果满足条件: V 中至少有 k 个顶点v 使得 $f[v] \ge 1$ 成立,则称 f 为图 G 的一个符号 k-控制函数,图 G 的符号 k-控制数定义为

 $\gamma_{ks}^{-11}(G) = \min\{f(V) | f$ 为图 G 的符号 k-控制函数 $\}$.

特殊地,当 k=|G|时符号 k-控制函数被称为符号控制函数,并且此时符号 k-控制数也被称为符号控制数 (Signed domination number)(参见文献[$2\sim6$],并记为 $\gamma_s(G)$.

对于图的符号控制数,已有不少的结果,我们也给出了其最好可能的下界

引理 $1^{[3]}$ 对于 n 阶连通图 G,则其符号控制数

$$\gamma_s(G) \geqslant 2 \frac{-1 + \sqrt{1 + 8n}}{2} ? - n$$

并且此下界是最好可能的.

而对于图 G 的 k-符号控制数,目前已知的结果甚少,E· H· Cockayne 等人[1~2]研究一些特殊图的一个符号 k-控制数,确定了路、圈和星的符号 k一控制数,得到了一些特殊图符号 k-控制函数界限,如

收稿日期:2004-06-10

作者简介:徐保根(1963-),男,江西南昌人,教授.

中国知网 https://www.cnki.net

引理 $2[1\sim 2]$ 对于任意 $n(n \ge 2)$ 阶树 T 和整数 $k(1 \le k \le n)$,则 $2(2k+4)/3 - n \le \gamma_{kk}^{11}(T) \le 2(k+1) - n$

引理 $3^{[3]}$ 对于任意 $n(n \ge 3)$ 阶 r-正则图 $G(r \ge 2)$ 和整数 $k(1 \le k \le n)$,均有

$$\gamma_{ks}^{-11}(G)$$
 $k \frac{r+3}{r+1} - n \quad \text{当 } r \text{ 为奇数时};$
 $k \frac{r+2}{r+1} - n \quad \text{当 } r \text{ 为偶数时};$

而对于一般连通图,还没有一个好的界限被获得,本文将给出连通图符号 k-控制数的一个下界,并指出此下界是最好可能的.此外还确定了完全二部图的符号 k-控制数.

2 符号 k-控制数的下界

引理 4 对任意 $n(n \ge 3)$ 阶连通图 G 和整数 $k(1 \le k \le n-2)$,均有 $\gamma_{ks}^{-11}(G) \ge 4-n$

并且此下界是最好可能的.

证明记 G=(V,E),f 为 G 的一个符号 k-控制函数,使得 $f(V)=\gamma_{ks}^{-11}(G)$,由于 G 是 $n(n \ge 3)$ 阶连通图 且 $k \ge 1$,故 V 中至少有两个顶点在f 下的标号为+1,从而 $\gamma_{ks}^{-11}(G)=f(V) \ge 2-(n-2)=4-n$. 即引理 4 给出的下界成立.

对于完全二部图 $K_{2,n-2}=(V_1 \cup V_2, E)$,其中 $|V_1|=2$, $|V_2|=n-2$ 。定义 f 如下: 当 $v \in V_1$ 时 f(v)=1; 当 $v \in V_2$ 时 f(v)=-1. 可见 $f \in K_{2,n-2}$ 的一个符号 k-控制函数 $(1 \le k \le n-2)$,因此 $\gamma_{ks}^{-11}(K_{2,n-2}) \le f(V_1 \cup V_2)=4-n$. 即有 $\gamma_{ks}^{-11}(K_{2,n-2}=4-n, 9]$ 理 4 给出的下界是最好可能的. 证毕.

引理 5 对任意 $n(n \ge 3)$ 阶连通图 G, 当 k = n-1 时,则有

$$\gamma_{ks}^{-11}(G) \geqslant 2 \frac{1 + \sqrt{4n-3}}{2}? - n$$

并且此下界是最好可能的.

证明记 G=(V,E),设 f 是图 G 的一个符号 k-控制函数,并且使得 $f(V)=\gamma_{ks}^{-11}(G)$. 令: $A=\{u\in V|f(u)=1\},B=\{u\in V|f(u)=-1\},$ 可见 $A\cup B=V,A\cap B=\emptyset$.

 $| \operatorname{d} |_A | =_s, | \operatorname{B} | =_n -_s,$ 从而有 $\gamma_{ks}^{-11}(G) = | \operatorname{A} | - | \operatorname{B} | = 2s -_n.$

由于 k=n-1, 从定义 1 得知 : V 中至多除 1 个顶占外,其余每个顶点 v 均满足 $f[v] \ge 1$. (注意 f(N[v]) 简记为 f[v])

不难验证: 当 n=3 时 $s \ge 2$; 当 n=4 或 5 时 $s \ge 3$. 即引理 5 对于 n=3、4、5 时成立. 下设 $n \ge 6$.

 $\Diamond A_0 = \{v \in A \mid f[v] \ge 1\} \subseteq A$, 因此有 $|A_0| = s$ 或者 s - 1.

情况 1 当 $|A_0| = s$ 时;即 $A = A_0$,此时 B 中除 1 个顶点(记为 v_0)外,其余每个顶点 v 均满足 $f[v] \ge 1$. 注意到当 $v \in B$ 时 f(v) = -1,故 B 中除 v_0 外的每个顶点至少邻接 A 中两个顶点 由于 G 是连通图,故 v_0 点或者至少邻接 A 中一个顶点,或者 v_0 点在 B 中的邻点邻接 A 中 3 个顶点 即有 $|E(A,B)| \ge 2(n-s-1)+1$ 1,从而 A 中至少有一个顶点 u 邻接 B 中 $\frac{2(n-s-1)+1}{s}$ 个顶点,而 N[u] 至多有 s 个 A 中顶点,由 f[u]

1 得知: s 一 $\frac{2(n-s-1)+1}{s}$ \geqslant 1,即有 $s^2+s-2n+1$ \geqslant 0,注意到 n \geqslant 6 且 s 为整数,我们有

$$s \gg \frac{-1 + \sqrt{8n-3}}{2}$$
? $\gg \frac{1 + \sqrt{4n-3}}{2}$?

情况 2 当 $|A_0| = s - 1$ 时,注意到当 $v \in B$ 时 f(v) = -1 且 $f[v] \ge 1$,故 B 中每个顶点至少邻接 A 中两个顶点,从而至少邻接 A_0 中 1 个顶点,即 $|E(A_0,B)| \ge n - s$,故 A_0 中存在一个顶点 v,使得 v 点邻接 B 中至少, a 一次, a 一个 a 一

s 为整数得知

$$s > \frac{1 + \sqrt{4n-3}}{2}$$
?

综合情况 1~2,均有

$$\gamma_{ks}^{-11}(G) = 2s - n \ge 2 \frac{1 + \sqrt{4n-3}}{2} - n$$

为了看到此下界是最好可能的,下面构造一个 $n(n \ge 3)$ 阶连通图 G,使得等式成立.

令
$$s$$
 = $\frac{1+\sqrt{4n-3}}{2}$, 由于 $n \ge 3$ 故知 $s \ge 2$.

设 s 阶完全图 K_s , 记 $A=V(K_s)=\{u_1,u_2,\ldots,u_s\}$, 在 u_1 点处增加 n-s 条悬边, 这同时也增加了 n-s 个 悬挂点,记之为 $B = \{v_1, v_2, \dots, v_{n-s}\}$.由于 $s^2 - s - n + 1 \ge 0$,即 $n - s \le (s-1)^2$,故能将 B 中每个顶点均邻 接 $A_1 = A \setminus \{u_1\}$ 中恰好 1 个顶点, 使得 A_1 中每个顶点至多邻接 B 中 s-1 个顶点, 这样所得的图记为 G=(V, E). 定义 f 如下: 当 $v \in A$ 时 f(v) = 1; 当 $v \in B$ 时 f(v) = -1. 可见, V 中除 u_1 点外其余 k = n-1 个顶点 v,均满足 $f[v] \ge 1$.即 f 是图 G 的一个符号 k-控制函数,因此 $\gamma_{ks}^{-11}(G) \le f(V) = 2s - n$,从而 $\gamma_{ks}^{-11}(G) = 2s - n$ n. 即引理 5 给出的下界是最好可能的. 证毕.

综合引理 4~5 及引理 1,我们获得了下面的

定理 1 对任意 $n(n \ge 3)$ 阶连通图 G 和整数 $k(1 \le k \le n)$,均有

$$\gamma_{ks}^{-11}(G) \geqslant \begin{cases} 4-n & \text{對 } 1 \leqslant k \leqslant n-2 \text{ 时}; \\ 2 \frac{1+\sqrt{4n-3}}{2} ? - n & \text{對 } k = n-1 \text{ 时}; \\ 2 \frac{-1+\sqrt{8n+1}}{2} ? - n & \text{對 } k = n \text{ 时} \end{cases}$$

并且此下界是最好可能的.

完全二部图的符号 k-控制数

本节给出完全二部图 $K_{m,n}(m \ge n \ge 2)$ 的符号 k-控制数.

定理 2 对于完全二部图 $K_{m,n}(m \ge n \ge 2)$ 和整数 $k(1 \le k \le m+n)$,则有

1) 当 m 和 n 均为偶数时;

2) 当 m 为奇数且 n 为偶数时;

偶数时;
$$\gamma_{ks}^{-11}(K_{m,n}) = \begin{cases} 2-m & \text{$\pm 1 \le k \le m$ 时;} \\ 2 & \text{$\pm 1 + m \le k \le m + \frac{n}{2} + 1$ 时;} \\ 4 & \text{$\pm i \text{$\mp i$};} \end{cases}$$
 n 为偶数时;
$$\gamma_{ks}^{-11}(K_{m,n}) = \begin{cases} 2-m & \text{$\pm 1 \le k \le m$ 时;} \\ 3 & \text{$\pm m + 1 \le k \le m + \frac{n}{2} + 1$ $\text{$\pm i \text{$\mp i \text{$\mp i \text{$\mp i \text{$\pm i $\pm i \text{$\pm i \text{$\pm$$$

3) 当 *m* 偶数且 *n* 为奇数时;

为奇数时;
$$\gamma_{ks}^{-11}(K_{m,n}) = \begin{cases} 3-m & \text{当 } 1 \leqslant k \leqslant m \text{ 时}; \\ 3 & \text{当 } m+1 \leqslant k \leqslant m+\frac{n+3}{2} \text{或 } n=3 \text{ 时}; \\ 5 & \text{数时}; \end{cases}$$

中国知网 https://www.cnki.net 4) 当 m 和 n 均为奇数时;

证明:略.

参考文献:

- [1] E. J. Cockayne and C. M. Mynhardt, On a generalization of signed dominating function of graphs [J]. Ars. Combin., 1996, (43): 235~ 245.
- [2]T·W·Haynes, S·T·Hedetniemi and P·J·Slater, Domination in graphs[M]. New York, 1998, 95~105.
- [3] Zhongfu Zhang. Baogen Xu etc. A note on the lower bounds of signed domination numbers of a graph[J]. Discrete Math. 1999, (195): 295 \sim 298.
- [4]Baogen Xu, On minus domination and signed domination in graphs[J]. 数学研究与评论, 2003, (4):586~590.
- [5]Baogen Xu, On signed edge domination numbers of graphs[J]. Discrete Math., 2001, (239): 179~189.
- [6] J. H. Hattingh and E. Ungerer, The signed and minus k-subdomination numbers of comets [J]. Discrete Math., 1998, (183): $141 \sim 152$. [7]F.哈拉里,图论[M].上海:上海科技出版社,1980.

On Signed k-subdomination Numbers of Graphs

XU Bao-gen

(School of Natural Science, East China Jiaotong University, Nanchang 330013, China)

Abstract: In this paper we give a lower bound of the signed k-subdomination numbers for all connected graphs of order n, which is the best possible, and determine the signed k-subdomination numbers of the complete bipartite graphs. Key words: signed dominating function; signed domination number; signed k-subdominating function; signed k-subdomination number