文章编号:1005-0523(2023)05-0001-09

轨距杆对重载铁路小半径曲线轮轨动力学性能影响

陈清华,閤 鑫,胡晓宇,王开云

(西南交通大学轨道交通运载系统全国重点实验室,四川 成都 610031)

摘要:为探明轨距杆对重载铁路小半径曲线轮轨动力学性能影响,基于车辆-轨道耦合动力学理论,分析了机车以70 km/h 的 运行速度通过 R300 m 曲线时的轮轨动态相互作用和轮轨磨耗,系统对比分析了运行速度、曲线半径和轨距杆对机车通过小 半径曲线时钢轨跨中轨距动态扩大量和轮轨磨耗数,进一步研究了轨距杆的布置间距对线路横向稳定性的影响。仿真结果表 明:轨距杆能够加强轨道轨距保持能力并减小曲线外侧钢轨翻转角;相比未安装轨距杆的曲线,安装了轨距杆的曲线其内侧钢 轨的接触点更靠近曲线内侧;机车通过有无轨距杆的小半径曲线时的轮轨磨耗数和轨距动态扩大量均随着曲线半径减小和运 行速度增大而增大;增大轨距杆布置密度可以有效增强线路轨距保持能力,当轨距杆布置间距由4个轨跨减小至3个轨跨时, 轨距动态扩大量将降低 36.3%。

关键词:重载铁路;轨距杆;数值计算;轮轨动力学性能;小半径曲线;轮轨磨耗;车辆轨道耦合动力学

中图分类号:U231 文献标志码:A

本文引用格式:陈清华, 悶鑫, 胡晓宇, 等. 轨距杆对重载铁路小半径曲线轮轨动力学性能影响[J]. 华东交通大学学报, 2023, 40 (5):1-9.

DOI:10.16749/j.cnki.jecjtu.20230614.002

Influence of Gauge Rods on Wheel–Rail Dynamic Performance in Tight Curves of Heavy–Haul Railway

Chen Qinghua, Ge Xin, Hu Xiaoyu, Wang Kaiyun

(State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China)

Abstract: In order to investigate the influence of gauge rods on the dynamic performance in tight curves of heavy haul railway, the wheel-rail dynamic interaction and wheel-rail wear when the locomotive passed the R300 m curve at a running speed of 70 km/h were analyzed on the basis of vehicle-track coupling dynamic theory. The influence of running speed and curve radius on gauge dynamic expansion, wear number, and gauge rods were analyzed. Furthermore, the influence of the spacing of gauge rods on the lateral stability of the track was studied. The simulation results indicate that the gauge rods can stabilize the gauge and reduce the turning angle of the rail at the outside curve. Compared with the curve without gauge rods, the contact point of the inner rail of the curve with gauge rods is closer to the inner side of the curve. The wear number and the dynamic gauge expansion when the locomotive negotiates a tight curve will increase with the decrease of curve radius and the increase of running speed. Increasing the arrangement density of gauge rods can effectively enhance the ability to stabilize the gauge. The dynamic gauge expansion will reduce by 36.3% when the spacing of gauge rods is reduced from 4 to 3 rail spans.

收稿日期:2023-05-10

基金项目:国家杰出青年科学基金项目(51825504);国家自然科学基金项目(U19A20110)

Key words: heavy -haul railway; gauge rods; numerical simulation; wheel -rail dynamic performance; tight curves; wheel-rail wear; vehicle-track coupling dynamics

Citation format: CHEN Q H, GE X, HU X Y, et al. Influence of gauge rods on wheel-rail dynamic performance in tight curves of heavy-haul railway[J]. Journal of East China Jiaotong University, 2023, 40(5):1–9.

近年来随着重载铁路上轴重和运行速度增加, 机车通过小半径曲线时的轮轨动态相互作用不断 增强。在恶劣的轮轨相互作用下钢轨压溃、侧磨¹¹、 接触疲劳等轮轨损伤问题日益凸显,严重降低了轮 轨服役寿命,甚至危及重载列车行车安全。

国内外研究人员对小半径曲线轮轨动力学性 能影响进行了大量理论和试验研究。陈雷等四开展 了提速货车低速时通过小半径曲线的动力学试验。 李敏等问通过仿真和试验分析了某型内燃动车组的 动态曲线通过性能。王坤全四研究了采用径向转向 架的提速货运机车在曲线上的动力学性能、牵引性 能和通过性能。王娜娜等阿分析了不同种类的轮径 差对车辆小半径曲线通过性能的影响规律。史智勇 等¹⁰研究了 HSM 型钢轨铣磨车以同速度条件下通 过小半径曲线的轮轨安全性。刘文龙等四研究了悬 挂式单轨车辆在曲线通过安全限速内通过不同半 径曲线时的轮轨动态相互作用,轮轨安全性指标和 平稳性指标。沈钢等四分析了初始与实测型面对地 铁车辆曲线通过性能的影响,并分析不同的轮轨型 面匹配对轮轨磨耗、钢轨波浪形磨耗、接触疲劳的 影响。Liu 等99通过仿真和试验分析了曲线地段轨道 横向位移特性。刘锦辉等^[10]建立了三维重载列车-轨 道动力学模型,基于该模型分析了车钩力作用下列 车通过曲线时的轮轨相互作用。折成林^山研究了C80 重载货车通过不同轨底坡设置条件下的小半径曲 线时的轮轨接触特性、运行安全性和轮轨磨耗。许 自强等印基于轮轨几何匹配关系、轮轨磨耗分析等 方法研究了轮缘异常磨耗机理,并通过仿真和试验 验证了提出的轮缘减磨措施。丁君军等四采用基于 接触斑能量耗散理论的车轮踏面磨耗模型仿真分 析了国内重载线路上货车车轮踏面的磨耗演化过 程。李星等^[14]基于 Archard 材料磨损模型分析了曲 线半径、轮缘润滑及轮轨材料对小半径曲线钢轨侧 磨和滚动接触疲劳的影响。马帅等四结合钢轨磨耗 和线路运营等数据,建立了基于非线性自回归神经 网络的曲线钢轨侧磨发展预测模型,提出了状态修 和周期修相结合的曲线钢轨换轨策略。以上文献在 小半径曲线轮轨动力学性能研究中均未考虑轨距 杆作用。

轨距杆是一种连接轨道上内外钢轨以提高小 半径曲线上钢轨横向稳定性的轨道强化设备。《普 速铁路线路修理规则》(TG/GW 102—2019)规定了 正线半径小于 800 m的曲线需要安装轨距杆。毛帅 等响通过试验发现在桥梁和线路过渡段分层次不等 距安装轨距杆可使得路桥过渡段刚度更均匀,从而 降低轮轨动态相互作用和钢轨磨耗。为此,本文基 于车辆-轨道耦合动力学理论,考虑曲线上轨距杆 的作用,建立机车-有砟轨道耦合动力学模型。基于 该模型分析了机车通过小半径曲线时曲线上安装 轨距杆对轮轨动力学性能和轮轨磨耗的影响,得到 了不同半径和不同速度下机车通过有无安装轨距 杆曲线时轮轨动力学性能的变化规律,并进一步研 究轨距杆布置密度对线路轨距保持能力的影响。

1 机车-有砟轨道耦合动力学模型

1.1 机车和有砟轨道动力学模型

基于车辆轨道耦合动力学理论^[17],建立了考虑 轨距杆的机车--有砟轨道耦合动力学模型(图1)。该 模型主要包括机车模型、含轨距杆的有砟轨道模型 和轮轨相互作用模型。模型中机车采用 SIMPACK 软件建立,轮轨相互作用模型中轮轨法向力和切向 力分别采用 Hertz 弹性非线性接触理论和 FASTSIM 计算。轨道在 SIMULINK 软件中采用自编程方法建 立。机车模型和轨道模型通过联合仿真方法实时交 换数据实现耦合。

机车主要悬挂及结构参数如表1所示。机车模 型包括1个车体、2个转向架、2个双杆推挽式牵引 杆、4个轮对和4个架悬式牵引电机。模型中各部件 均考虑为刚体,部件间通过弹簧阻尼力单元相互连 接。其中牵引电机只考虑纵向、浮沉及点头3个自

Value

25 9

2.8

0.625

0.291 0.291

0.632

	表1 重载机车主要悬挂及结构参数
Tab.1	Main suspension and structural parameters of heavy-haul locomotive

Parameter	Value	Parameter
The mass of the carbody/kg	64 900	Axle load/t
The mass of the bogie/kg	7 275	Length between bogie pivot centers/m
The mass of the wheelset/kg	4 225	Axle spacing/m
The mass of the motor/kg	2 910	The wheel radius/m
Longitudinal stiffness of primary suspension/(MN/m)	37.49	Longitudinal stiffness of secondary suspension/(MN/m)
Lateral stiffness of primary suspension/(MN/m)	7.961	Lateral stiffness of secondary suspension/(MN/m)
Vertical stiffness of primary suspension/(MN/m)	2.345	Vertical stiffness of secondary suspension/(MN/m)

由度,牵引杆考虑除摇头外的5个自由度,其余部 件均考虑6个自由度。

有砟轨道模型由钢轨、轨枕和道床的三层结构 组成。钢轨采用连续弹性离散点支承的简支 Timoshenko梁模拟,考虑其垂向、横向弯曲和扭转振动。 钢轨横向的振动微分方程如下(垂向和扭转方程类 似,此处不再赘述。)

$$m_{r}\frac{\partial^{2}Y_{r}(x,t)}{\partial t^{2}} + \kappa_{y}G_{r}A_{r}\left[\frac{\partial\Psi_{y}(x,t)}{\partial x} - \frac{\partial^{2}Y_{r}(x,t)}{\partial x^{2}}\right] = -\sum_{i=1}^{N_{r}}F_{Ii}(t)\delta(x-x_{i}) - \sum_{j=1}^{4}Q_{j}\delta(x-x_{wj}) - (1)$$

$$\sum_{k=1}^{N_{r}}F_{Gk}(t)\delta(x-x_{k})$$

$$\rho_{r}I_{z}\frac{\partial^{2}\Psi_{y}(x,t)}{\partial t^{2}} + \kappa_{y}G_{r}A_{r}\left[\Psi_{y}(x,t) - \frac{\partial Y_{r}(x,t)}{\partial x}\right] - EI_{z}\frac{\partial^{2}\Psi_{y}(x,t)}{\partial x^{2}} = 0 \qquad (2)$$

式中: m_r 为单位长钢轨的质量; Y_r 和 Ψ_r 分别表示钢 轨横向位移和绕 γ 轴的截面转角变形; F_{ii} 是第 i 个 支点的横向支反力;Qi是第j位车轮作用于钢轨的 横向荷载;F_G是第 k 根轨距杆作用于钢轨的横向 力;x_i是第 i 个支点的坐标,x_{wi}是第 j 位车轮坐标;x_k 是第 k 根轨距杆的坐标; N, 是钢轨支点数; N, 是轨 距杆根数;Iz为钢轨截面对z轴的惯性矩;E为钢轨 弹性模量; G_r 为钢轨剪切模量; ρ_r 为钢轨密度; A_r 为 钢轨截面面积; κ, 为钢轨横向截面的剪切因子。

轨枕考虑其横向、垂向和扭转自由度,道床仅 考虑其垂向振动。钢轨与轨枕、轨枕与道床块和道 床块与道床块之间均采用弹簧-阻尼单元连接。为 体现机车运行在离散支承的钢轨上引起的周期性 激励,采用了文献[18]中提出的移动窗口模型。

(a) The side view of the dynamic model

(b) The installation position of the gauge rods

1.2 轨距杆模型

对于轨距杆, 电气化铁路上采用的绝缘轨距 杆可以看作是由三段圆杆连接而成,轨距杆一般安 装在轨枕两跨之间,杆两端分别固定在左右轨的轨 底(图 2)。本文中将其简化为具有轴向拉压刚度和 弯曲刚度的弹簧单元,其轴向拉压刚度 K, 和弯曲刚 度 K_b分别为

$$K_{i} = \frac{1}{\frac{2l_{1}}{E A_{1}} + \frac{l_{2}}{E A_{2}}} = \frac{E_{g}A_{1}A_{2}}{2A_{1}l_{2} + A_{2}l_{1}}$$
(3)

$$K_{\rm b} = \frac{1}{\frac{2l_1}{E_{\rm g}I_1} + \frac{l_2}{E_{\rm g}I_2}} = \frac{E_{\rm g}I_1I_2}{2I_1l_2 + I_2l_1} \tag{4}$$

式中: E_g 为轨距杆的弹性模量; A_i 为杆件的截面面积: l_i 为杆件的长度; I_i 为杆件截面的惯性矩。

图 2 绝缘轨距杆 Fig.2 Insulated gauge rods

1.3 模型验证

为验证所建立的考虑轨距杆的机车-轨道耦 合动力学模型,在某重载铁路小半径曲线上开展 了轮轨力测试。试验曲线的曲线半径为400 m,曲 线超高为100 mm,圆曲线处每隔4根轨枕安装有 一根轨距杆,如图2所示。试验中依据《轮轨横向 力和垂向力地面测试方法》(TB/T 2489—2016)测 试机车以65 km/h的速度通过曲线时的内外侧轮 轨垂向力。采用建立的动力学模型计算相同工况 下的轮轨垂向力,仿真与试验的对比结果如图3 所示。可以看出,仿真模型计算的轮轨垂向力最大 值与实测轮轨垂向力最大值之间的误差最大为 3.7%,证明了所建立模型的可靠性。

2 轨距杆对轮轨动态相互作用影响

利用机车-有砟轨道耦合动力学模型,对比分 析了轨道有无轨距杆时,机车通过不同曲线半径的 轮轨动态相互作用特性和轮轨磨耗特征。仿真中机 车运行速度分为 70、80、90 km/h 3 个等级,曲线选 取 R300、R400、R500、R600 m 4 种不同半径的曲线。 线路总长设置为 500 m,其中缓和曲线和圆曲线设 置为 100 m,其余路段为直线。安装轨距杆的线路从 进入圆曲线起每隔 3 个轨跨设置一根轨距杆,总共 设置 50 根轨距杆。

2.1 轮轨动态响应

限于篇幅,此处仅给出机车以 70 km/h 的速度 分别通过有无安装轨距杆的 R300 m 曲线时的一位 轮对处的轮轨动态响应。如图 4(a)所示,内外侧钢 轨接触点在进入曲线后均向曲线外侧移动,在圆曲 线上接触点位置横移量达到最大值约 15.5 mm;对 比圆曲线上有无轨距杆时内外侧钢轨上的接触点 位置,可以看出外侧钢轨接触位置差别不大,安装 轨距杆的内侧钢轨较未安装轨距杆的钢轨其轮轨 接触位置靠曲线内侧约 0.5 mm。图 4(b)~图 4(e)分 别为机车通过有无轨距杆曲线时的内外侧轮轨垂 向力、轮轨横向力、脱轨系数和轮重减载率。由图可 知,在直线上运行时内外侧轮轨垂向力在125 kN 左右,进入曲线后由于曲线超高为欠超高,曲线外 侧轮对轮轨垂向力增载,反之内侧轮对轮轨垂向力 减载;圆曲线上轮轨垂向力最大为 156.1 kN,轮轨 横向力最大为 76.7 kN, 脱轨系数最大为 0.51, 轮重 减载率最大为 0.25。从时域图可以看出,曲线上安 装轨距杆对于轮轨相互作用力影响不大。图 4(f)展 示了有无轨距杆下内外侧车轮的轮轨磨耗数。由图 可知,曲线上的内外侧车轮的轮轨磨耗数远大于直 线上,且曲线外侧车轮轮轨磨耗数大于内侧车轮轮 轨磨耗数。对比圆曲线上同侧车轮的轮轨磨耗数, 其中曲线外侧车轮相差不大,安装了轨距杆时的内 侧车轮处轮轨磨耗数均值较未安装轨距杆时减小 了约1.6‰。

图 5 对比了机车以 70 km/h 速度分别通过有无 安装轨距杆的 R300 m 曲线时线路轨枕横向位移、 钢轨跨中轨距动态扩大量和内外侧钢轨翻转角。由 图 5(a)可知,安装了轨距杆的曲线段处轨枕横向位 移略微增大;有无安装轨距杆时曲线段处轨枕最大

图 4 一位轮对处的轮轨动态响应 Fig.4 The dynamic response of the wheel-rail interaction at the first wheelset

横移量分别为-0.208 mm 和-0.197 mm。从图 5(b) 可以看出,曲线线路安装轨距杆可以有效增强钢轨 保持轨距的能力,圆曲线上有无安装轨距杆时的钢 轨跨中轨距动态扩大量最大值分别为 1.051 mm 和-1.923 mm。图 5(c)和 5(d)展示了内外侧钢轨翻 转角的动态响应,圆曲线上有无安装轨距杆时曲线 外侧的钢轨最大翻转角分别为-0.382°和-0.471°,曲 线内侧的钢轨最大翻转角分别为 0.238°和 0.163°。 从表 2 中可以看出,轨距杆对于轨道尤其是钢 轨的动态响应影响很大。轨距杆在减小轨距动态 扩大量、增强曲线线路轨距保持能力、提高线路横 向稳定性的同时,可以有效的减小外侧钢轨翻转 角和最大钢轨翻转角,但也会增大曲线内侧钢轨 的翻转角。轨距杆还会小幅减弱曲线外侧的轮轨 动态相互作用力,但相应也会增大内轨的轮轨动 态相互作用力。

(a) The lateral displacement of the sleeper

(b) The dynamic expansion displacement at the rail mid-span

(c) The roll angle at the outside of the rail

(d) The roll angle at the inside of the rail

图 5 线路动态响应

Fig.5 The dynamic response of the track

表 2 曲线上有无轨距杆时轮轨动力学响应结果对比 Tab.2 Comparison of the wheel-rail dynamic response with/without gauge rods mounted on the curve

Maximum value	With gauge rods	Without gauge rods	Relative error/%	
The wheel-rail vertical force of the outside	156.9 kN	156.4 kN	0.32	
The wheel-rail vertical force of the inside	113.3 kN	113.0 kN	0.27	
The wheel-rail lateral force of the outside	-76.39 kN	-77.19 kN	-1.04	
The wheel-rail lateral force of the inside	38.14 kN	37.82 kN	0.85	
Wear number	1 032 N	1 037 N	-0.48	
The dynamic expansion displacement at the rail mid- span	1.051 mm	1.988 mm	-47.13	
The lateral displacement of the sleeper	0.208 mm	0.197 mm	5.58	
The roll angle at the outside of the rail	-0.382°	-0.471°	18.90	
The roll angle at the inside of the rail	0.238°	0.163°	46.01	

2.2 曲线半径和运行速度的影响

图 6 对比了机车以 70 km/h 的速度分别通过不 同半径曲线时一位轮对车轮在圆曲线上时的轮轨 磨耗数和钢轨跨中的最大轨距动态扩大量。由图可 知,轮轨磨耗数和轨距动态扩大量随着曲线半径增 大而减小;相比未安装轨距杆的曲线轨道,安装了 轨距杆的轨道其轨距动态扩大量在 R400 m 曲线处 最大减小了约 48.4%; 轨距杆对不同半径下的轮轨 磨耗数影响不大。

图 7 对比了机车以不同运行速度分别通过 R300 m 半径曲线时一位轮对车轮处钢轨的轨距动 态扩大量和轮轨磨耗数。可以看出,轮轨磨耗数和

(a) The dynamic expansion displacement at the rail mid-span

轨距动态扩大量随着机车运行速度增大而增大;相 比未安装轨距杆的曲线轨道,安装了轨距杆的轨道 其轨距动态扩大量在速度为70 km/h 时最大减小了 约45.5%, 机车在安装了轨距杆的轨道上以90 km/h 的通过曲线时其最大轮轨磨耗数减小了1.42%。

2.3 轨距杆布置参数影响

《普速铁路线路维修规则》(TG/GW 102-2019) 中规定半径小于 450 m 的曲线上每 25 m 钢轨需 要安装 10 根轨距杆,对于轨枕间距为 0.6 m 的线 路曲线时应当每4个轨跨布置一根轨距杆。为分 析轨距杆布置间隔对轨道横向稳定性的影响,仿 真分析了机车以 70 km/h 速度通过轨距杆布置间 距为 1~10 个轨跨长度 R400 m 曲线时的线路动态 响应。

由图 8 可知,曲线上的最大轨距动态扩大量随 着轨距杆布置密度减小而增大,轨距杆布置间距超 过4个轨跨时的轨距动态扩大量与未安装轨距杆 时的动态扩大量相差不大。当轨距杆布置间距由

4个轨跨减小至3个轨跨时,轨距动态扩大量将降 低 36.3%;轨距杆布置间距减小至 2 个轨跨时,轨距 动态扩大量将降低 77.9%。

图 8 轨距杆布置间隔对线路横向稳定性的影响 Fig.8 The influence of the spacing of gauge rods on the lateral stability of the track

3 结论

本文基于车辆-轨道耦合动力学理论,分析了

轨距杆对重载铁路小半径曲线轮轨动力学性能和 轮轨磨耗的影响,得出以下结论。

 1)轨距杆可以减小曲线上轨道的轨距动态扩 大量和钢轨最大翻转角,相比未安装轨距杆的曲 线,安装了轨距杆的曲线其内侧钢轨的接触点更靠 近曲线内侧。

2) 机车通过有无轨距杆的小半径曲线时的轮 轨磨耗数和轨距动态扩大量随着曲线半径减小和 机车运行速度增大而增大,不同运行速度和曲线半 径下轨距杆均可有效降低轨距动态扩大量。

3) 增大轨距杆布置密度可有效减小线路轨距 动态扩大量。当轨距杆布置间距由4个轨跨减小至 3个轨跨时,轨距动态扩大量将降低36.3%;轨距杆 布置间距减小至2个轨跨时,轨距动态扩大量将降低77.9%。

参考文献:

- [1] 陈鹏,刘秀波,张志川,等. 重载铁路曲线地段的轮轨接触 分析[J]. 铁道建筑,2020,60(11):123-127.
 CHEN P,LIU X B,ZHANG Z C,et al. Analysis on wheel rail contact in curve section of heavy haul railway[J]. Railway Engineering,2020,60(11):123-127.
- [2]陈雷,王新锐. 货车低速通过小半径曲线动力学性能试验 分析[J]. 中国铁道科学,2009,30(6):84-90.
 CHEN L,WANG X R. Analysis on the dynamics performance of the freight car negotiating the small radius curve at low speed[J]. China Railway Science,2009,30(6):84-90.
- [3] 李敏,罗贇,杨勇军. A1A-A1A 轴式动车动态通过小半径 曲线动力学性能仿真与实测比较分析[J]. 机车电传动, 2014(2):35-37.

LI M, LUO Y, YANG Y J. Comparison and analysis of simulation and measured results on A1A-A1A motor vehicle dynamical negotiating small radius curve dynamic performance[J]. Electric Drive for Locomotive, 2014(2):35-37.

- [4] 王坤全. 径向转向架提速货运机车的动力学性能、牵引性能和曲线通过性能[J]. 铁道机车车辆,2004(S1):26-30.
 WANG K Q. Performance of dynamics traction and curving on raising speed freight locomotive with radial bogie [J]. Railway Locomotive &Car,2004(S1):26-30.
- [5] 王娜娜,罗世辉,马卫华. 轮径差对车辆动态曲线通过的 影响[J]. 铁道机车车辆,2010,30(2):47-49.
 WANG N N,LUO S H,MA W H. Influence of wheel-di-

ameter difference on dynamic curving performance of vehicle system[J]. Railway Locomotive &Car,2010,30(2):47-49.

- [6] 史智勇,王开云,吕凯凯,等. HSM 型钢轨铣磨车动力学性 能仿真分析[J]. 西南科技大学学报,2015,30(4):29-32. SHI Z Y,WANG K Y,LYU K K,et al. Simulation study on dynamics performances of HSM rail milling train[J]. Journal of Southwest University of Science and Technology,2015, 30(4):29-32.
- [7] 刘文龙,徐延海,杨吉忠,等. 悬挂式单轨车辆曲线通过性 仿真研究[J]. 广西大学学报(自然科学版),2016,41(5): 1402-1412.

LIU W L,XU Y H,YANG J Z,et al. Simulation research on curve-passing performance of the suspended monorail vehicle[J]. Journal of Guangxi University(Natural Science Edition),2016,41(5):1402–1412.

- [8] 沈钢,王捷. 轮轨型面对车辆曲线通过性及磨耗影响[J]. 同济大学学报(自然科学版),2014,42(1):91-96.
 SHEN G,WANG J. Wheel/rail profiles effects on vehicle curving behaviors and wear[J]. Journal of Tongji University (Natural Science),2014,42(1):91-96.
- [9] LIU P F,ZHAI W M,WANG K Y. Establishment and verification of three-dimensional dynamic model for heavyhaul train-track coupled system[J]. Vehicle System Dynamics, 2016,54(11):1511-1537.
- [10] 刘锦辉,师多佳,刘文武. 地铁曲线地段钢弹簧浮置板轨 道横向位移特性研究[J]. 华东交通大学学报,2021,38(6): 106-113.

LIU J H,SHI D J,LIU W W. Analysis on transverse displacement of steel spring floating plate track at curved section[J]. Journal of East Jiaotong University, 2021, 38(6): 106–113.

[11] 折成林. 重载铁路轨底坡设置对轮轨接触及轨面受力的 影响[J]. 铁道勘察,2022,48(5):104-109.
SHE C L. Influence of rail cant on wheel-rail contact and rail surface force in small radius curve section of heavyhaul railway[J]. Railway Investigation and Surveying,2022, 48(5):104-109.

[12] 许自强,董孝卿,彭中彦,等.基于轮轨匹配的小曲线轮
 缘异常磨耗机理与控制措施[J].振动与冲击,2022,41(18):
 127-133.

XU Z Q, DONG X Q, PENG Z Y, et al. Abnormal flange wear mechanism and control measures for small curve rails considering the wheel/rail matching[J]. Journal of Vibration and Shock, 2022, 41 (18): 127–133.

[13] 丁军君,孙树磊,李芾,等. 重载货车车轮磨耗仿真[J]. 交

通运输工程学报,2011,11(4):56-60.

DING J J,SUN S L,LI F, et al. Simulation of wheel wear for heavy haul freight car[J]. Journal of Traffic and Transportation Engineering, 2011, 11(4):56–60.

[14] 李星,吴少培,王相平,等.小半径曲线钢轨侧磨减缓措施及其对滚动接触疲劳影响研究[J].铁道科学与工程学报, 2022,19(5):1155-1167.

LI X, WU S P, WANG X P, et al. Side wear and rolling contact fatigue of rails on small radius curves[J]. Journal of Railway Science and Engineering, 2022, 19(5):1155–1167.

- [15] 马帅,刘秀波,任松斌,等. 朔黃重载铁路曲线钢轨侧磨预测研究[J]. 机械工程学报,2021,57(18):118-125.
 MA S,LIU X B,REN S B,et al. Research on side wear prediction of curve rail in Shuohuang heavy haul railway
 [J]. Journal of Mechanical Engineering,2021,57(18):118-125.
- [16] 毛帅,韩清强. 普通线路小半径曲线不均匀侧磨减缓措施[J]. 铁道建筑,2014(8):113-115.
 MAO S,HAN Q Q. Strengthening measures of uneven side wear of rail head at curve section with small-radius[J].
 Railway Engineering,2014(8):113-115.
- [17] 翟婉明. 车辆-轨道耦合动力学[M]. 4 版. 北京:科学出版社,2015.

ZHAI W M. Vehicle-track coupled dynamics[M]. 4th ed. Beijing: Science Press, 2015.

[18] XIAO X B, JIN X S, WEN Z F. Effect of disabled fastening systems and ballast on vehicle derailment[J]. ASME Journal of Acoustic and Vibration, 2007, 129(2):217–229.

第一作者:陈清华(1998—),男,博士研究生,研究方向为轨 道车辆系统动力学。E-mail:chenqh@my.swjtu.edu.cn。

通信作者:王开云(1974—),男,研究员,博士,博士生导师, 研究方向为轨道交通大系统动力学。E-mail:kywang@swjtu. edu.cn。

(责任编辑:吴海燕)