文章编号:1005-0523(2024)04-0108-10

轮轨耦合激励下高速列车齿轮箱体振动特性

朱海燕1,卢乔丹1,胡 军1,叶小芬3,裴 帮2,师陆冰2,

刘忠明2,魏昱洲3,徐颖杰2

(1. 华东交通大学机电与车辆工程学院,江西南昌 330013; 2. 郑州机械研究所有限公司,河南郑州 450001;3. 中车戚墅堰机车车辆工艺研究所股份有限公司,江苏常州 213011)

摘要:[目的]探究车轮多边形与钢轨波磨耦合激励下高速列车齿轮箱体振动特性。[方法]建立轮对、齿轮箱体和轨道均为柔性体的刚柔耦合动力学模型,在齿轮箱体布置3个振动加速度传感器,对不同工况开展动力学仿真,分析齿轮箱体各测点的振动加速度。[结果]在轮轨耦合激励下,同一车速下,车轮多边形为23阶,波幅为0.010 mm时各测点振动加速度均方根值最大,在3个测点中车轮多边形对测点B的影响最大;在钢轨波磨激励下,测点B受到牵引电机谐波转矩与齿轮副啮合的共同作用在3测点中振动加速度均方根值最大,测点A、C的振动加速度均方根值随波幅的增大而增大;对比含武广谱的轮轨耦合激励,由轮轨激扰引发的振动频率与齿轮箱体第5阶固有频率接近,诱发共振。[结论]列车变速运行或改变齿轮箱结构可避免 共振。

关键词:高速列车;齿轮箱体;钢轨波磨;车轮多边形

中图分类号:U270.3 文献标志码:A

本文引用格式:朱海燕,卢乔丹,胡军,等.轮轨耦合激励下高速列车齿轮箱体振动特性[J].华东交通大学学报,2024,41(4): 108-117.

Study on Vibration Characteristics of High-Speed Train Gearbox Housing under Wheel-Rail Coupling Excitation

Zhu Haiyan¹, Lu Qiaodan¹, Hu Jun¹, Ye Xiaofen³, Pei Bang², Shi Lubing², Liu Zhongming², Wei Yuzhou³, Xu Yingjie²

School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China;
 Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., Zhengzhou 450001, China;
 CRRC Qishuyan Institute Co., Ltd., Changzhou 213011, China)

Abstract: (Object) Explore the vibration characteristics of high-speed train gearbox housing under the coupling excitation of wheel polygon and rail corrugation. **(Method)** The rigid-flexible coupling dynamic model of wheelset, gearbox housing and track was established. Three vibration acceleration sensors were arranged in the gearbox housing, and dynamic simulation was carried out under different working conditions to analyze the vibration acceleration of each measuring point of gearbox housing. **(Result)** Under the wheel-rail coupling excitation, at the same speed and with the wheel polygon of 23rd order and the amplitude of 0.010 mm, the root mean

收稿日期:2024-04-06

基金项目:江西省自然科学基金面上项目(20224BAB204040);江西省自然科学基金面上重点项目(20232ACB204022);研究 生创新资助计划(YC2022-s520);河南省中央引导地方科技发展基金(Z20221341003)

square value of the vibration acceleration of each measuring point is the largest, and the wheel polygon has the greatest influence on the measuring point B in the three measuring points. Under the excitation of rail corrugation, the root mean square value of vibration acceleration of measuring point B is the largest among the three measuring points under the combined action of harmonic torque of traction motor and gear meshing. The root mean square value of vibration acceleration of measuring points A and C increases with the increase of amplitude. Compared with the wheel-rail coupling excitation with broad spectrum, the vibration frequency caused by

wheel-rail excitation is close to the 5th order natural frequency of the gearbox housing, which induces resonance. **[Conclusion]** The resonance can be avoided by changing the speed of the train or changing the structure of the gearbox.

Key words: high-speed train; gearbox housing; rail corrugation; wheel polygon

Citation format: ZHU H Y, LU Q D, HU J, et al. Study on vibration characteristics of high-speed train gearbox housing under wheel-rail coupling excitation[J]. Journal of East China Jiaotong University, 2024, 41(4): 108–117.

【研究意义】在复杂服役工况下,齿轮箱体要承 受牵引齿轮传动系统复杂时变内外部激励、牵引电 机谐波转矩和轮轨所产生的激励,导致高速列车齿 轮箱体损伤引发列车安全事故。轨道不平顺和车 轮多边形激励产生的高频振动冲击,导致齿轮箱体 振动加速度、动应力等参数偏大,缩短齿轮箱体的 使用寿命。明确轮轨耦合激励对齿轮箱体振动特 性的影响,对避免结构共振和齿轮箱体的结构设计 具有理论指导意义。

【研究现状】为研究齿轮箱故障工况下的振动 特性, Parey 等[1-2]建立齿轮传动系统的多自由度模 型。Carbonelli等³³通过有限元分析得到齿轮箱体 固有模态振型。成军强等码对地铁齿轮箱体进行 自由模态分析。张涛等的通过台架试验识别出高 速列车齿轮箱装配状态下的模态参数,利用锤击 试验确定虚假模态振动来源以及各零部件对台架 试验中齿轮箱体振动响应的影响。Kahraman 等⁶⁹ 在齿轮箱体上添加外部激励,研究不同激励下振 动特性。Zhang等¹⁷对齿轮箱进行了动应力测试, 确定了外部激励条件下齿轮箱体结构的应力及分 布,分析齿轮箱裂纹产生的原因。研究还发现,由 齿轮箱振动造成的噪声和损坏比单纯的齿轮啮合 更加严重¹⁸;齿轮箱体比轴箱更易受速度变化的影 响¹⁹;齿轮在瞬间启动或加速时齿轮箱体会产生较 大的振动[10];轨道不平顺和车轮多边形工况下齿轮 箱体动应力变化规律,速度、线路条件及车轮踏面 都会影响齿轮箱体的受力状态[11-12]。研究在轨道

不平顺及车轮多边形工况下的齿轮箱体动应力分 布时,发现在油位窗口和底部表面应力较大^[13-14], 确定了齿轮箱体的重点研究部位。目前大部分对 齿轮箱体的研究主要集中于齿轮内部激励所造成 的损伤,对外部激励下齿轮箱体的振动特性研究 较少。

【创新特色】本文建立车辆-轨道刚柔耦合动力 学模型,同时添加车轮多边形和钢轨波磨激励,研 究轮轨耦合激励下高速列车齿轮箱体的振动特性。

【关键问题】研究轮轨耦合激励对齿轮箱体振动特性影响,通过列车变速运行或改变齿轮箱体的结构从而避免发生共振,有效延长齿轮箱体使用寿命。

1 构建刚柔耦合动力学模型

1.1 车辆-轨道系统刚柔耦合动力学模型

在传统车辆-轨道动力学模型中,全刚体能有 效缩短计算时间,但在考虑高速运行状态下,车辆 系统某些部件会发生严重的共振现象。建立考虑 轮对、齿轮箱体和轨道为柔性体,其他部件均为刚 体的刚柔耦合动力学模型,将柔性钢轨作为激励 区域,能更加真实反映齿轮箱体各部位振动情 况。齿轮传动系统是由驱动轴、小齿轮、从动轴、 大齿轮和箱体构成,由牵引电机带动驱动轴驱动 小齿轮,齿轮啮合带动大齿轮,大齿轮安装在从动 轴上,从动轴带动轮对牵引列车前进,拓扑结构如 图1所示。 N/mm

图 1 齿轮箱传动结构 Fig. 1 Gearbox housing transmission structure

用 Ansys 建立高速列车柔性齿轮箱体,在从动轮与车轴连接轴承座处和C型支架处施加约束,根据赫兹相关公式计算施加约束的刚度值如表1所示,从动轮与车轴较长侧、从动轮与车轴较短侧及主动轮与车轮侧施加3个方向的约束刚度,主动轮与牵引电机侧施加X、Y两个方向的刚度。

表 1 齿轮箱约束的刚度值 Tab.1 Gearbox constraint stiffness value

Position	K_X	K_Y	Kz
Longer side of axle	8.49×10 ⁸	8.55×10 ⁸	8.55×10 ⁸
Shorter side of axle	1.49×10 ⁹	8.65×10 ⁹	8.65×10 ⁹
Generator-side	3.51×10 ⁸	3.45×10 ⁸	/
Wheel side	3.31×10 ⁸	3.21×10 ⁸	3.21×10 ⁸

用 Abaqus 建立长 21 m的 CN60 柔性钢轨(密度 为 7.85×10³ kg/m³,杨氏模量为 2.1×10¹¹ Pa, 泊松比 为 0.3)和柔性轮对, 在钢轨上表面沿长度方向每隔 30 cm 划分一个耦合节点,底面每隔 60 cm 划分一个 耦合节点,边界条件保留主节点的自由度,有限元分 析得到齿轮箱体和钢轨的固有频率如表 2 所示。

	表2	齿轮箱体和钢轨固有频率	
Tab.2	Gearbox	housing and rail natural frequency	H

Gearbox housing	Rail
554.29	1.06
668.66	2.60
682.16	2.91
720.66	5.72
867.59	7.17
974.36	9.49
	Gearbox housing 554.29 668.66 682.16 720.66 867.59 974.36

选择齿轮箱振动最明显的3个位置作为加速度 测点,A为齿面观测孔,B为小齿轮箱体正上方,C 为油液观测孔,如图2(a)所示,安装位置如图2(b) 所示。用Simpack建立轮对、齿轮箱体和轨道为柔 性体,其余部件为刚性体的动力学模型如图3所示, 模型有27个刚体、2个柔性轮对、2个柔性齿轮箱体 和一段柔性钢轨,柔性钢轨安装在距轨道起始位置 100m。模型包含1个车体、2个构架、4个轮对、4个 电机吊架、8个轴箱,每个轮对上有齿轮箱,齿轮箱 内有大齿轮及小齿轮,运动方向有纵向、横向、垂 向、侧滚、点头和摇头,整个模型共有74个自由度, 车体、构架、轮对和电机吊架各包含6个方向的自由 度,轴箱、大小齿轮只具有1个绕Y方向转动的自由 度,齿轮箱有3个平动和1个转动自由度。

(a) Measuring points

(b) Installation site

图 2 齿轮箱体测点及安装位置 Fig. 2 Gearbox housing measuring point and installation

图 3 车辆-轨道刚柔耦合动力学模型 Fig. 3 Vehicle-track rigid-flexible coupling dynamic model

1.2 轮轨激励函数

1.2.1 钢轨波磨激励函数

钢轨波磨一般表示为周期性谐波磨耗,波磨在 钢轨纵向距离x处的幅值大小为

$$z = Z_0 \cos\left(2\pi \frac{x}{L} + \varphi_0\right) \tag{1}$$

式中: Z_0 为钢轨波磨波峰高度,mm; φ_0 为初始相位 角,rad;L为波磨波长,mm;x为距起始位置的距离,mm; 复杂的钢轨波磨可由多个简谐波组成。

高速列车以不同速度通过钢轨波磨区段时,由 不同波长引起的列车振动频率为

$$f = \frac{v}{3.6\lambda} \tag{2}$$

式中:f为高速列车振动频率,Hz;v为列车通过波磨 区段的速度,km/h;λ为波磨波长,m。

实际工况下钢轨波磨函数是由多个正弦函数 叠加,仿真分析用函数模拟实际工况下的钢轨波磨 形态,利用式(1)在 Matlab 中编程,通过傅里叶变 换,叠加武广轨道不平顺谱构造本文所需不同波长 波幅的钢轨波磨数据。

1.2.2 车轮多边形激励函数

考虑车轮多边形半径偏差与阶数、不圆度及旋转角度之间的函数关系,将这些参数以谐波函数形 式进行模拟,得到车轮多边形函数表达式^[15]

 $\Delta R(\beta) = CA \sin(n(\beta + \beta_0))$ $\beta \in (0, 2\pi]$ (3) 式中: ΔR 为车轮半径偏差;A为振幅;n为车轮多边 形阶数;C为不圆度; β 为车轮旋转角度; β_0 为一个 额外相对转动和偏移。在Simpack软件中设置相关 参数改变车轮多边形阶数和波幅。

1.3 模型验证

对比实际服役工况和仿真结果,实际数据来自 哈大线路,列车的速度 300 km/h,线路为直线区 段。图4为齿轮箱振动加速度幅值频域仿真和线路 试验结果对比,两者的频率成分基本吻合,在横向 上,仿真频率 57 Hz处齿轮箱振动加速度幅值为 0.15 g,试验频率 59 Hz处齿轮箱振动加速度幅值为 0.34 g,仿真频率 2 477 Hz处齿轮箱振动加速度幅值 的 0.36 g,试验频率 2 464 Hz处齿轮箱振动加速度幅 值为 0.36 g,试验频率 2 464 Hz处齿轮箱振动加速度幅 值为 0.48 g;在垂向上,仿真频率 69 Hz处齿轮 箱振动加速度幅值为 0.10 g,试验频率 69 Hz处齿轮 箱振动加速度幅值为 0.17 g,仿真频率 2 468 Hz处 齿轮箱振动加速度幅值为 0.19 g,试验频率 2 476 Hz 处齿轮箱振动加速度幅值为 0.47 g。可以看出仿真 与试验频率成分基本一致,能模拟实际运行工况, 模型符合要求。

图4 齿轮箱体振动加速度幅值频域仿真与试验结果对比

Fig. 4 Comparison of frequency domain simulation and test results of vibration acceleration amplitude of gearbox housing

2 轮轨激励下齿轮箱体振动分析

2.1 车轮多边形激励对齿轮箱体振动特性影响

2.1.1 车轮多边形阶数对齿轮箱体振动特性影响

车轮多边形与钢轨波磨形成的轮轨激励,会对 轮轨系统产生很大的冲击载荷,服役线路上车轮多 边形和钢轨波磨形成的轮轨耦合激励对齿轮箱体 振动特性的影响尚不明确,因此有必要探究。

设置钢轨波磨波长为100 mm,波深为0.010 mm, 对比分析列车在5种速度3种车轮多边形阶数组合 工况下齿轮箱体各测点的振动加速度幅值。列车 的运行速度为240,270,300,330 km/h和360 km/h, 基于试验运行的动车组齿轮箱的振动数据¹⁸¹和车轮 多边形统计数据^[16-17],设置车轮多边形阶数为1阶、 11阶和23阶。

由图5可知,当速度小于300 km/h时,齿轮箱体 各测点的振动加速度均方根值受车轮多边形阶数 的影响较为明显;速度从240 km/h增加到300 km/h 时,各测点的振动加速度均方根值大多随着车速增 加先增加后减小。同一车速下,各测点的振动加速 度均方根值在23 阶达到最大,11 阶的最小,1 阶居 中,在齿轮箱的3 个测点中,测点B在3 个方向的振 动加速度均方根值最大。当速度大于300 km/h时, 各测点的振动加速度均方根值受车轮多边形阶数 的影响甚微,而受速度的影响比较显著,其响应特 征主要表现为:测点A在X方向呈持续减小趋势,

图 5 不同速度下车轮多边形阶数对齿轮箱体振动加速度均方根值的影响 Fig. 5 Influence of wheel polygon order on the RMS value of vibration acceleration of gearbox housing at different speeds

在 Y、Z方向表现为先增大后减小;测点 B 在 X、Y方向呈持续减小趋势,在Z方向表现为先增大后减小; 测点 C 在 X、Y方向表现为先减小后增大,在Z方向 呈持续增大趋势。

2.1.2 车轮多边形波幅对齿轮箱体振动特性影响

设置钢轨波磨波长为100 mm,波深为0.010 mm 时,由于23 阶车轮多边形对齿轮箱振动影响更为显 著。设置车轮多边形为23 阶,根据文献[18] 18~24 阶 车轮多边形幅值限值在0.020 mm以下,因此仿真设置 车轮多边形波幅分别为0.001,0.005 mm和0.010 mm, 车速为240~360 km/h,仿真分析车轮多边形较小波幅对齿轮箱体的振动影响。

由图6可知,同一车速下,各测点的振动加速度 均方根值在车轮多边形波幅0.010 mm时最大;3个 测点中,测点B在3个方向的振动加速度均方根值 最大,说明小齿轮箱体正上方受车轮多边形影响最 大,各测点在3个方向上受车轮多边形波幅影响没 有共同变化规律。对比图5、图6齿轮箱测点A的 X、Y方向的振动加速度均方根值图,发现X方向振 动加速度均方根值在300 km/h时达到最大,大小接近

图 6 不同速度车轮多边形幅值对齿轮箱体振动加速度均方根值的影响 Fig. 6 Influence of wheel polygon amplitude on the RMS value of gearbox housing vibration acceleration at different speeds

24 m/s²,而在 Y方向上存在最小值,大小接近10 m/s²。 结合图 7 齿轮箱测点 A 在 300 km/h 下的频域图分 析,发现 X方向上振动主频在 830 Hz处振动加速度 接近 45 m/s²,而列车以 300 km/h 的速度通过波长为 100 mm 的钢轨波磨区段引起的振动激扰频率为 833 Hz,接近齿轮箱体第 5 阶固有频率 867.59 Hz 诱 发共振使得此速度工况下齿轮箱测点 A 在 X 方向 上的振动加速度均方根值达到最大,而在 Y 方向上 此速度工况下并未发生共振。测点 C 在 Y 方向的振 动加速度均方根值变化趋势也出现随车速增大先 增大后减小的情况,在 270 km/h 达到最大值,需进 一步分析 270 km/h 速度工况下的频域特性来判定 是否发生共振。当车辆通过激励区段时引起振动 的激扰频率与结构部件的固有频率接近时,两者频 率差值范围为0~50 Hz,可认为发生共振。

2.2 钢轨波磨激励对齿轮箱体振动特性影响

2.2.1 钢轨波磨波长对齿轮箱体振动特性影响

钢轨波磨波幅选取 0.010 mm,我国高速铁路 出现的典型钢轨波磨波长^[19],存在两个波长范围, 分别为 50~65 mm 和 100~125 mm,设置仿真的钢 轨波磨波长为 30,60 mm 和 100 mm,分析车速 240,300 km/h 和 360 km/h工况下齿轮箱体测点A、 B和C在横向和垂向的振动加速度均方根值。

由图7可知,3个测点的垂横向振动加速度均 方根值随波磨波长的增大而减小。测点B的垂横 向振动加速度最大,测点B在较低波长范围内的垂 横向振动加速度最大,说明钢轨波磨波长对小齿轮 箱体正上方的振动影响更大。当波长大于60 mm 时各测点变化平缓,当波长小于60 mm时各测点垂 横向振动加速度急剧变化,3个测点的垂横向振动 加速度均方根值随波磨车速的增大而缓慢增大。

2.2.2 钢轨波磨波幅对齿轮箱体振动特性影响

设置钢轨波磨激励波长为100 mm,研究发现 在高速铁路中,钢轨波磨波幅为0.040 mm左右^[20],因 此设置波磨波幅分别为0.015,0.035 mm和0.050 mm, 分析车速240,300 km/h和360 km/h工况下齿轮箱 体测点A、B和C在横向和垂向的振动加速度均方 根值。

由图 8 可知,测点 C 的垂向振动加速度均方根 值随波幅的变化趋势与其余两测点不同,其余两测 点垂向振动加速度均方根值均随波幅的增大而增 大,测点 C 的垂向振动加速度均方根值随波幅的增 大而减小;3 个测点的垂向振动加速度均方根值随 随速度的增大而增大。测点 C 的横向振动加速度 均方根值随波幅及速度的变化趋势与其余两测点 不同,其余两测点横向振动加速度均方根值均随波 幅的增大而减小,随速度增大而增大;测点 C 的横 向振动加速度均方根值随波幅的增大而增大,随速 度增大而减小。测点 A、C 的振动加速度均方根值 较为接近,测点 B 的变化幅度更大,测点 B 不仅受 到轮轨激励,还受到牵引电机的谐波转矩和齿轮副 啮合时的冲击,多重作用下使测点 B 的振动幅值更 大,变化趋势更剧烈。

3 含轨道谱的轮轨激励对齿轮箱体振动特

性影响

列车实际运行时,除车轮多边形和钢轨波磨激 励外,还有轨道随机不平顺谱的影响,因此在添加 激励时,将钢轨波磨和实测武广谱叠加形成新的轨

Fig. 7 Influence of rail corrugation wavelength on the RMS value of gearbox housing vibration acceleration at different speeds

图 8 不同速度下钢轨波磨波幅对齿轮箱体振动加速度均方根值的影响 Fig. 8 Influence of rail corrugation amplitude on the RMS value of gearbox housing vibration acceleration at different speeds

道激励,并添加车轮多边形激励,研究多重激励下 齿轮箱体的振动特性。选取钢轨波磨波长100 mm、 波幅0.100 mm叠加实测武广谱构成轨道不平顺激 励,编写 tre.文件导入 Simpack 软件中作为轨道激 励,同时选择23 阶车轮多边形、波幅为0.010 mm作 为车轮激励,仿真分析在不同车速工况下轮轨耦合 激励对齿轮箱体各测点的振动影响。由图9可知,

Fig. 9

加了武广谱后,测点A、C的振动加速度均方根值随 车速的变化较为平缓,测点B在车速小于300 km/h 时变化幅度大,超过300 km/h后变化趋于平缓。钢 轨波磨主要影响垂向动力响应,测点B的垂横向振 动加速度均方根值均在300 km/h达到最大,因此分 析了此速度下3个测点的振动加速度功率谱密度^[21], 结果如图10所示。

Fig. 10 Power spectral density diagram of gearbox housing vibration acceleration

4 结论

1)添加车轮多边形和钢轨波磨激励,在轮轨激励下对比不同车轮多边形阶数和波幅,同一车速下,车轮多边形为23阶,波幅为0.010 mm时各测点振动加速度均方根值最大,3个测点中测点B受车轮多边形影响最大。由于高速列车齿轮箱体受齿轮啮合时变刚度和外部轮轨接触关系等因素的耦合影响,仅考虑轮轨激励具有一定的局限性。

2)只添加钢轨波磨激励,发现测点A、C的振动加速度均方根值随波磨波幅的增大而增大,测点 B受到牵引电机谐波转矩和齿轮副啮合的共同作用,振动加速度均方根值最大。钢轨波磨引发的振动激发齿轮箱体第2、6阶固有模态,加剧振动影响齿轮箱的使用寿命。

3)添加车轮多边形、钢轨波磨及武广谱激励, 300 km/h下含武广谱的轮轨激励引发的振动频率 接近齿轮箱体第5阶固有频率,诱发共振使振动加 剧。列车变速运行改变激扰频率或改变齿轮箱的 结构可避免共振。研究不同参数对齿轮箱振动的 影响时,本文采用了相互独立的研究方法,在后续 研究中可综合多参数,以得到最优组合提高列车的 运行品质。

参考文献

- PAREY A, EL BADAOUI M, GUILLET F, et al. Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect[J]. Journal of Sound and Vibration, 2006, 294(3): 547-561.
- [2] PANDYA Y, PAREY A. Crack behavior in a high contact ratio spur gear tooth and its effect on mesh stiffness[J]. Engineering Failure Analysis, 2013, 34: 69-78.
- [3] CARBONELLI A, RIGAUD E, PERRET-LIAUDET J. Vibro-acoustic analysis of geared systems-predicting and controlling the whining noise[J]. Automotive NVH Tech-

nology, 2016(10): 63-79.

- [4] 成军强, 祝航. 某型地铁齿轮箱有限元模态分析及试验研究[J]. 铁道机车与动车, 2018(6): 32-33, 42.
 CHENG J Q, ZHU H. Finite element modal analysis and experimental study of a certain type of subway gearbox
 [J]. Railway Locomotive and Motor Car, 2018(6): 32-33, 42.
- [5] 张涛,李强,王曦,等. 高速列车齿轮箱箱体在位模态识别[J]. 机械工程学报, 2018, 54(12): 31-41.
 ZHANG T, LI Q, WANG X, et al. Modal identification of gearbox housing of high speed train under assembly condition[J]. Journal of Mechanical Engineering, 2018, 54 (12): 31-41.
- [6] KAHRAMAN A, SINGH R. Non-linear dynamics of a geared rotor-bearing system with multiple clearances[J]. Journal of Sound and Vibration, 1991, 144(3): 469-506.
- [7] ZHANG B, TAN A C C, Lin J H. Gearbox fault diagnosis of high-speed railway train[J]. Engineering Failure Analysis, 2016(66): 407-420.
- [8] 刘金帅. 基于能量有限元的齿轮箱系统建模与振动控制 研究[D]. 济南: 山东大学, 2014.
 LIU J S. Research on model and vibration control of gearbox system based on energy flow element method[D]. Jinan: Shandong University, 2014.
- [9] 朱海燕,朱志和,肖乾,等.高速列车齿轮箱疲劳可靠性及故障诊断研究现状[J]. 华东交通大学学报, 2021, 38
 (1): 113-121.

ZHU H Y, ZHU Z H, XIAO Q, et al. Research status of fatigue reliability and fault diagnosis of high-speed train gearbox[J]. Journal of East China Jiaotong University, 2021, 38(1): 113-121.

- [10] 邱星慧,杨建伟,陈忠伟. 刚柔耦合地铁齿轮传动系统 振动响应分析[J]. 机械传动, 2018, 42(3): 85-89.
 QIU X H, YANG J W, CHEN Z W. Analysis of vibration response of rigid-flexible coupled subway gear transmission system[J]. Journal of Mechanical Transmission, 2018, 42(3): 85-89.
- [11] 王文静, 闫瑞国, 李广全, 等. 中国标准动车组齿轮箱箱 体动态特性分析研究[J].振动工程学报, 2019, 32(3): 534-539.
 WANG W J, YAN R G, LI G Q, et al. Dynamic characteristics of Chinese standard EMU gearbox housing[J]. Journal of Vibration Engineering, 2019, 32(3): 534-539.
- [12] 王文静,李广全,韩俊臣,等. 高速列车齿轮箱箱体动应 力影响规律[J]. 交通运输工程学报, 2019, 19(1): 85-95.
 WANG W J, LI G Q, HAN J C, et al. Influence rule of dynamic stress of high-speed train gearbox housing[J]. Jour-

nal of Traffic and Transportation Engineering, 2019, 19 (1): 85-95.

- [13] WANG Z, ALLEN P, MEI G, et al. Dynamic characteristics of a high-speed train gearbox in the vehicle-track coupled system excited by wheel defects[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1210-1226.
- [14] 王志伟. 服役环境下高速列车齿轮及轴承系统动力学 建模及耦合振动分析[D]. 成都: 西南交通大学, 2019.
 WANG Z W. The modeling and coupling vibration analysis of gear transmission and bearing system for highspeed train with operation environment[D]. Chengdu: Southwest Jiaotong University, 2019.
- [15] 杨九河. 动车组车轮多边形振动行为和防治措施研究
 [D]. 成都: 西南交通大学, 2022.
 YANG J H. Study on vibration behavior and prevention measures of polygon wheels of EMUs[D]. Chengdu: Southwest Jiaotong University, 2022.
- [16] 邹航宇. 考虑车轮失圆的高速列车齿轮箱振动特性与 疲劳强度研究[D]. 成都: 西南交通大学, 2018.
 ZOU H Y. Study on vibration characteristics and fatigue strength of high-speed train gearbox considering out-ofround wheel[D]. Chengdu: Southwest Jiaotong University, 2018.
- [17] 王宇. 车轮失圆激扰下的轮轨动力响应分析[D]. 成都: 西南交通大学, 2016.

WANG Y. Study on influence of out-of-round railway wheels on wheel/rail interaction force[D]. Chengdu: Southwest Jiaotong University, 2016.

[18] 袁天升. 高速动车组结构弹性振动的轮轨激扰限值研 究[D]. 北京: 北京交通大学, 2023.

YUAN T S. Research on wheel-rail excitation limit of elastic vibration of high-speed EMU structure[D]. Beijing:

Beijing Jiaotong University, 2023.

- [19] 谷永磊, 赵国堂, 王衡禹, 等. 轨道振动特性对高速铁路 钢轨波磨的影响[J]. 中国铁道科学, 2016, 37(4): 42-47. GU Y L, ZHAO G T, WANG H Y, et al. Effect of track vibration characteristics on rail corrugation of high speed railway[J]. China Railway Science, 2016, 37(4): 42-47.
- [20] 林凤涛, 黄琴, 张海, 等. CRH3 高速列车多边形磨耗车 轮通过钢轨波磨区段的轮轨力研究[J]. 铁道科学与工 程学报, 2021, 18(7): 1706-1714.
 LIN F T, HUANG Q, ZHANG H, et al. Study on wheelrail force of CRH3 high speed train with wheel polygon when passing corrugation rail[J]. Journal of Railway Science and Engineering, 2021, 18(7): 1706-1714.
- [21] 田国英. 高速铁路轨道不平顺功率谱及其与行车品质 关系研究[D]. 成都: 西南交通大学, 2015. TIAN G Y. Study on track irregularity power spectral density of high-speed railway and its correlation with vehicle running quality[D]. Chengdu: Southwest Jiaotong University, 2015.

通信作者:朱海燕(1975—),男,博士,教授,博士生导师,研 究方向为车辆系统动力学与疲劳强度。E-mail: zhupetrelcao@163.com。

(责任编辑:熊玲玲)