文章编号:1005-0523(2025)01-0097-08

各向同性磁流变弹性体性能测试及研究

尧子健,胡国良,喻理梵,朱文才

(华东交通大学机电与车辆工程学院,江西南昌 330013)

摘要:为了得到磁流变弹性体(MRE)随外加磁感应强度和激励频率的性能变化趋势,制备不同配比的MRE进行相对磁流变 效应和剪切模量性能研究。以硅橡胶硅油质量分数之比为3:2为制备基础,选用高黏度的硅油,制备3种MRE样品,分析在 振荡剪切模式下,不同配比、不同剪切应变和剪切频率下MRE的储能模量和剪切模量随磁感应强度的变化以及在不同预压 力下MRE法向力的变化趋势。实验结果表明,MRE的储能模量、剪切模量和法向力会随着磁感应强度的增大而增大。测试 结果表明,当预压力由5N增大到25N时,MRE法向力最大变化量增大了31.6%。当磁感应强度从0增大到0.8T时,样品3 的最大储能模量为2.25 MPa,相对磁流变效应最大可达1465.60%,样品3剪切模量最大为2.25 MPa,相较于零场情况增大了 1400.00%。实验表明,MRE适用于高频率、低剪切应变的工作场合,80%含量的铁粉能有效提高MRE的力学性能。

关键词:磁流变弹性体;储能模量;剪切模量;磁流变效应

中图分类号:TP391.4 文献标志码:A

本文引用格式: 尧子健, 胡国良, 喻理梵, 等. 各向同性磁流变弹性体性能测试及研究[J]. 华东交通大学学报, 2025, 42(1):97-104.

Performance Testing and Analysis of Isotropic Magnetorheological Elastomer

Yao Zijian, Hu Guoliang, Yu Lifan, Zhu Wencai

(School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China)

Abstract: In order to obtain the trend of the properties of magnetorheological elastomer (MRE) with the applied magnetic flux density and excitation frequency, MREs with different ratios were prepared to investigate the relative MR effects and shear modulus properties. Three kinds of MRE samples were prepared based on the silicone rubber and silicone oil mass fraction ratio of 3:2, and high viscosity silicone oil was selected to analyze the changes of energy storage modulus and shear modulus with magnetic flux density under oscillatory shear mode with different ratios, different shear strains, and shear frequencies, as well as the trends of MRE normal force under different preloads. The experimental results show that the energy storage modulus, shear modulus and normal force of MRE normal force increases by 31.6% when the preload is increased from 5 N to 25 N. When the magnetic flux density increases from 0 to 0.8 T, the maximum energy storage modulus of sample 3 is 2.25 MPa, with a maximum relative MRE effect of 1 465.60%, and the maximum shear modulus of sample 3 is 2.25 MPa,

收稿日期:2024-05-22

基金项目:国家自然科学基金项目(52165004);江西省国际科技合作重点项目(20232BBH80010);江西省自然科学基金项目 (20242BAB25260)

which is an increase of 1 400.00% compared to the zero-field case. This experiment shows that MRE is suitable for high-frequency and low-shear strain application, and iron powder with 80% mass fraction can effectively improve the mechanical properties of MRE.

Key words: magnetorheological elastomer; energy storage modulus; shear modulus; magnetorheological effect **Citation format:** YAO Z J, HU G L, YU L F, et al. Performance testing and analysis of isotropic magnetorheological elastomer[J]. Journal of East China Jiaotong University, 2025, 42(1): 97–104.

磁流变弹性体(MRE)是由微米级的磁性颗粒 混合于非导磁的弹性基体(如硅橡胶)中形成的一 种新型智能材料^[1-2]。当外部磁场施加在MRE上 时,磁性颗粒会发生磁化,产生相互作用力,导致基 体内部颗粒排列成链状。当所施加外力改变MRE 原有形状后,作用力在材料内部产生反向力矩,因 此MRE在外部磁场作用下会产生弹性模量和磁致 阻尼,从而改变MRE的刚度和阻尼。当磁场减弱 或取消时,颗粒恢复到原来的状态,MRE的刚度也 随之恢复。MRE克服了磁流变液稳定性差、易沉淀 问题的同时,保留了磁流变材料刚度、阻尼可控的 性质,成为目前振动控制应用的理想选择^[3-4]。

1983年,Rigbi等^[5]首次将铁磁性颗粒与天然橡 胶混合制备出MRE样品,对铁磁性颗粒如何影响 MRE机械性能和磁学性能进行了研究。Wu等响在 磁场作用下,缩聚工艺制备了高填充各向异性聚氨 酯MRE,研究了增塑剂邻苯二甲酸二异辛酯(DOP) 对MRE 微观结构和性能的影响。试验表明, DOP 显著增强了绝对和相对磁流变效应。Gong等^[7]在 不外加磁场的情况下制备了多种各向同性MRE,研 究发现当硅橡胶硅油质量分数比为1:1,铁粉含量 为60%时,磁流变效应最大。Tian等¹⁸以软硅橡胶、 各种添加剂和不同质量分数的羰基铁颗粒(CIPs) 包覆硅烷偶联剂为原料,制备了各向异性磁流变弹 性体。研究了剪切模式下MRE在不同磁场、位移 幅值和频率下的动态黏弹性特性。Hu等¹⁹制备了 一种同时使用硅橡胶和聚氨酯作为基体的混合 MRE,实验表明这种混合MRE较单一基体的MRE 力学性能更优异。当工作在约0.2 T的磁感应强度 时,MRE的剪切模量最大增加可达0.5 MPa。Fan 等^[10]研究了不同交联密度和增塑剂含量对MRE的 阻尼性能的影响,提出了磁致损耗因子变化的机 理,分析表明颗粒重新排列是控制 MRE 阻尼特性 的重要因素。Jiang 等¹¹¹测量了 MRE 的动态剪切模

量,用来评估相对磁流变效应。结果表明相对MRE 效应可达188%。Von等^[12]制备了一种由10μm和 40μm铁磁颗粒混合的MRE样品,在动态剪切实验 中发现MRE的最大相对磁流变效应和粒径无关, 体积分数是重要参数,且磁性颗粒位置是无序的。 Hemmatian等^[13]分析了剪切工作模式下温度对 MRE 黏弹性性能的影响,结果表明MRE的存储和 损耗模量随着温度的升高而降低。以上研究没有 具体阐明不同羰基铁粉、硅橡胶和硅油质量比对 MRE 磁流变效应的影响规律。

基于以上分析,本文在硅橡胶硅油质量分数之 比为3:2的基础上,采用高黏度硅油,在不同剪切频 率和剪切应变下对3种MRE样品进行性能分析,得 出MRE参数与磁感应强度的关系曲线。结果表 明,当增大磁感应强度和剪切频率,减少剪切应变 时,MRE的储能模量和剪切模量会变大,相对磁流 变效应和工作频率范围也随之变大。通过计算分 析MRE样品的储能模量和剪切模量的变化趋势及 性能结果,选择性能较好的样品,为MRE隔振器的 应用提供参考。

1 MRE的制备

1.1 实验原材料

实验制备的MRE以704硅橡胶为基体;填充的 软磁性颗粒是羰基铁粉,其粒径为3~5μm,该羰基 铁粉具有稳定的磁导率、低磁滞和高磁饱和率;添 加剂为100 Cps的二甲基硅油,可降低固化前硅橡 胶的黏度,易于磁性颗粒形成链状结构。制备MRE 设备是搅拌器、电子秤、真空桶,且在制备过程中需 要用硅油涂抹样品。

1.2 样品制备过程

如图1所示, MRE具体制备过程可分为4步, 包括材料提取、混合搅拌、抽真空去气泡及样品固化。

图 1 MRE 制备流程图 Fig. 1 Flow chart of MRE preparation

 材料提取。按照硅橡胶与硅油的质量分数 之比为3:2,依次称取羰基铁粉、硅橡胶和硅油共
 100g,质量配比如表1所示,共制备了3种样品。

表1 MRE 配比(质量分数/%) Tab.1 MRE ratios (mass fraction/%)

样品	羰基铁粉	硅胶	硅油
1	70	18	12
2	75	15	10
3	80	12	8

2) 混合搅拌。根据配比把称量好的铁粉、硅橡 胶放入容器进行充分搅拌10 min,使得铁磁性颗粒 和硅油充分混合,均匀地分散在硅橡胶基体中。

3) 抽真空去气泡。搅混合均匀的混合物注入 模具后放置在真空箱抽真空2h,尽可能去除混合 物中的气泡,使 MRE 内部颗粒形成理想的链状 结构。

4) 样品固化。真空处理后,将混合物取出,随 后将经过处理的混合物倒入成型模具中。在封闭 模具里对材料施加适当的预紧力,确保材料在模具 中均匀分布,有助于成型。经过大约24h的室温固 化后,即可脱模,完成MRE样品制备。制备得到 的MRE样品如图2所示,样品半径为1cm,厚度为 1mm。由于MRE要应用在隔振器中,在工作过程 中处于动态应变条件,所以需要研究MRE在动态 应变下的特性。

2 MRE 性能测试

将MRE样品置于流变仪的转子与下盘片之

图 2 MRE 样品实物图 Fig. 2 Physical drawing of MRE samples

间。利用旋转流变仪对MRE的剪切动态力学性能 进行测试,整个测试过程,温度一直维持25℃,磁 感应强度加载范围为0~0.8T(电流0~5A)直到 MRE材料的储能模量趋于稳定为止。同时为了避 免样发生滑移现象,需要对试样施加轴向压力。

MRE的相对磁流变效应是MRE实现智能隔振的重要前提。相对磁流变效应 M_{R} 可直接反映MRE的流变性能,定义为

$$M_{\rm R} = \frac{G' - G_0}{G_0} \times 100\%$$
 (1)

式中:G'为储能模量,MPa; G_0 为零场模量,MPa; M_R 为MRE的磁流变效应。

2.1 预压力对 MRE 法向力的影响

图3表明了当旋转流变仪施加不同大小的初始 预压力的情况下,样品3所受到的法向力与预压力 的变化趋势。从图3中可看出,MRE法向力随磁感 应强度的增大表现出逐渐增大的趋势。当磁感应 强度达到0.8 T时,法向力变化量逐渐变为0。在

图 3 法向力和预压力的变化曲线 Fig. 3 Variation curves of normal force and preload force

MRE 达到饱和状态之后,外加磁感应强度继续增大,MRE 的法向力也能够保持稳定。MRE 的法向力来自磁场作用下铁磁颗粒之间产生的磁相互作用力。因此,当外加磁感应强度持续增大时,内部颗粒的磁化程度会加重,最终趋于饱和磁感应强度。所以,在磁感应强度持续增大时,MRE 法向力变化量的增大趋势会逐渐减小。

由图3可知,当施加的初始预压力设定值不同时,MRE法向力的变化趋势基本相同。但是当MRE的法向力趋于饱和时,不同预压力条件下法向力最大变化量并不相同。根据图3计算得出在不同初始预压力条件下法向力的最大变化量,结果如图4所示。从图4中可看出,随着预压力的增大,MRE法向力最大变化量也随之增大。当初始预压力为5N时,最大变化量为4.21N;当初始预压力为25N时,最大变化量为5.54N,法向力变化量的增长率为31.6%。测试结果表明,MRE磁性颗粒被外加磁场磁化,会产生相互作用力。增大初始预压力,会进一步增大颗粒之间的磁相互作用力。

7 6 5 法向力/N 4 3 2 1 0 10 5 15 20 25 30 预压力/N

2.2 磁性颗粒含量对 MRE 性能的影响

测试时剪切应变设定为0.1%,剪切频率为8 Hz, 其它参数保持不变。图5给出了储能模量随磁感应 强度的变化关系。磁感应强度为0时,样品1,样品 2 和样品 3 的零场模量分别为 0.12, 0.13 MPa 和 0.14 MPa。而当磁感应强度为0.8 T时,样品1的储 能模量为0.84 MPa,相对磁流变效应为 600.00%;样 品 2 的储能模量为 1.48 MPa,相对磁流变效应为

1 038.46%;样品 3 的储能模量为 2.11 MPa,相对磁 流变效应为 1 407.14%。

图 6 给出了剪切模量随磁感应强度的变化关系。当磁感应强度为0时,样品1,样品2和样品3的 剪切模量分别为0.12,0.13 MPa和0.14 MPa。当磁 感应强度为0.8 T时,样品1剪切模量为0.85 MPa, 提高了 608.33%;样品2剪切模量为1.48 MPa,提高 了 1038.46%;样品3剪切模量为2.11 MPa,提高了 1047.14%。

MRE的储能模量与其铁粉含量有着密切关系。当增加铁粉含量时,通常会导致MRE的储能模量增大。这主要是因为铁粉颗粒在外加磁场作用下,会形成链状结构,使得整个材料在一定程度上失去了流动性,并展现出类似固体的行为。这种链状结构有效地限制了材料的形变,从而提高了其刚度。然而,随着外加磁感应强度的增大,这种趋

Fig. 6 Relationship between shear modulus and magnetic flux density

势逐渐减缓。MRE试样在高磁感应强度下接近饱 和状态,此时其内部的磁性颗粒已经达到饱和状态,导致磁性颗粒之间的相互作用不再随着磁感应 强度的增加而显著增强。

2.3 剪切应变对MRE性能的影响

为了得到MRE的储能模量和剪切模量随外加 剪切应变的变化,测试时剪切应变为0.1%~1.0%, 剪切频率为8Hz,其它参数保持不变。图7所示为 MRE的储能模量和剪切模量随磁感应强度的变化 曲线。随着外加磁感应强度的增大,各向同性MRE 的储能模量逐渐增大。同时,MRE的剪切应变越 大,其储能模量反而变得就越小。当磁感应强度为 0~0.6 T时, MRE的储能模量和剪切模量增长迅速。当外加磁感应强度为0.6 T、剪切应变为0.1%时, MRE样品1,样品2和样品3的储能模量分别为0.77,1.38 MPa和2.05 MPa。而在外加磁感应强度为0.6 T、剪切应变为1.0%时, MRE样品1的储能模量为0.50 MPa, 相对于剪切应变为1.0%时的储能模量为0.63 MPa, 相对于剪切应变为1.0%时的储能模量为0.63 MPa, 相对于剪切应变为1.0%时的储能模量减少了54.35%, MRE样品3的储能模量为0.90 MPa, 相对于剪切应变为1.0%时的储能模量减少了56.10%, 即MRE的储能模量随着磁感应强度的增大而增加。

图 7 不同剪切应变下模量与磁感应强度的关系 Fig. 7 Relationship between modulus and magnetic flux density at different shear strains

剪切应变为0.1%时,样品1,样品2和样品3的磁 流变效应分别为601.50%,1556.00%和1464.80%。 剪切应变为0.5%时,样品1,样品2和样品3的磁流 变效应分别为468.80%,1057.00%和1017.70%。 剪切应变为1%时,样品1,样品2和样品3的磁流变 效应分别为372.10%,760.00%和771.80%。

剪切应变为0.1%,磁感应强度由0增大到0.8 T 时,样品1的剪切模量从0.12 MPa增大到0.85 MPa, 增大了608.33%;样品2的剪切模量从0.13 MPa 增大到了1.48 MPa,增大了1038.46%;样品3的 剪切模量从0.14 MPa增大到了2.11 MPa,增大了 1 407.14%。

剪切应变为1%,磁感应强度由0增大到0.8 T 时,样品1的剪切模量从0.12 MPa增大到0.56 MPa, 增大了366.67%;样品2的剪切模量从0.08 MPa增 大到了0.70 MPa,增大了775.00%;样品3的剪切模 量从0.11 MPa增大到了1.03 MPa,增大了836.36%。

储能模量是描述材料抵抗形变的能力,而剪切 应变则是描述形变的程度。如果剪切应变过大,可 能会导致 MRE 的永久性塑性形变,导致材料性能 下降。MRE 在达到磁饱和时,无法进一步增强磁化 效应,当剪切应变增大时,磁性颗粒会更快到达磁 饱和状态,且会导致材料内部产生较大应力和应 变,进而影响磁性颗粒的排列和相互作用,使得磁 性颗粒分布不均匀,降低磁流变效应,降低储能 模量。

2.4 剪切频率对MRE性能的影响

为了得到MRE储能模量和剪切模量随外加剪 切频率的变化,测试时剪切频率为2~10 Hz,剪切应 变为0.1%,其它参数保持不变。

图 8 为给定剪切应变下 MRE 的储能模量和剪 切模量随磁感应强度的变化规律。由图 8 可知,随 着外加磁感应强度增大,各向同性 MRE 的储能模 量逐渐增大。同时, MRE 的剪切频率越高,其储能 模量就越大。

当外加磁感应强度为0.8 T、剪切频率为2 Hz时, MRE样品1的储能模量为0.63 MPa,相对磁流变效 应为304.00%;MRE样品2的储能模量为1.08 MPa, 相对磁流变效应为1096.50%;MRE样品3的储能模 量为1.35 MPa,相对磁流变效应为894.60%。外加磁 感应强度为0.8 T、剪切频率为10 Hz时,MRE样品1 的储能模量为0.82 MPa,相对于2 Hz下的储能模量 增加了30.16%,相对磁流变效应为404.40%。MRE 样品2的储能模量为1.59 MPa,相对于2 Hz剪切频

图8 不同剪切频率下模量与磁感应强度的关系

Fig. 8 Relationship between modulus and magnetic flux density at different shear frequencies

率的储能模量增加了47.22%,相对磁流变效应为1528.90%。MRE样品3的储能模量为2.25 MPa,相对于2Hz剪切频率的储能模量增加了66.67%,相对磁流变效应为1465.60%。

剪切频率为2Hz时,当磁感应强度从0增大到 0.8T时,样品1的剪切模量从0.08MPa增大到 0.66MPa,增大了725.00%;样品2的剪切模量从 0.04MPa增大到1.09MPa,增大了2625.00%;样品 3的剪切模量从0.06MPa增大到1.66MPa,增大了 2666.67%。

剪切频率为10 Hz时,当磁感应强度从0增大到0.8 T时,样品1的剪切模量从0.08 MPa增大到0.92 MPa,增大了1050.00%;样品2的剪切模量从0.10 MPa增大到1.61 MPa,增大了1510.00%;样品3的剪切模量从0.15 MPa增大到2.25 MPa,增大了1400.00%。

MRE内部磁性颗粒在磁场作用下,需要一定时 间形成链状结构来响应磁场变化,在高频率下,颗 粒成链速率会加快,且磁性颗粒之间的相互作用会 变得更强烈,磁性颗粒含量越高这种现象也就越明 显,显著增加MRE的磁化效应,从而提高储能模 量。同时,频率越高,磁性颗粒的磁矩方向随磁场 的变化调整速率更快,从而提高储能效率。

3 结论

制备了羰基铁粉含量不同的硅橡胶硅油质量 分数之比为3:2的MRE样品,测试了3种MRE样 品的储能模量以及剪切模量随外加剪切应变和剪 切频率的变化趋势,以及不同预压力下MRE的法 向力变化曲线。综合样品的相对磁流变效应及剪 切模量变化范围的测试结果,本文选用了样品3作 为隔振器的试验材料,并在中低频率范围取得了良 好的隔振效果。

1) MRE的法向力会随着预压力的增大而增 大。当预压力保持不变时, MRE法向力会随着磁感 应强度的增大而增大。当预压力为5N时, 法向力 变化量4.21N, 当预压力为25N时, 法向力变化量 5.54N, 最大变化量为31.6%。

2) MRE的相对磁流变效应会随着磁感应强度 的增大而增大,即MRE的磁致储能模量在不断的 增大,其中,MRE的相对磁流变效应随着铁粉的质 量分数和剪切频率增大而增大,随着剪切应变的增 大而减小。

磁感应强度相同时,剪切频率越大,MRE样品的储能模量和剪切模量增大,最后趋于饱和。达到饱和状态时,最大相对磁流变效应为1465.60%,剪切模量最大变化量为1400.00%。相反,MRE的剪切应变越大,会导致MRE的储能模量越小。

为了得到性能更为良好的 MRE 材料,后续将 会考虑在材料制备过程中施加磁场,并且添加添加 剂,研究外加磁场及添加剂对 MRE 样品的剪切模 量及储能模量的变化影响,进一步分析 MRE 剪切 模量与隔振器隔振频率的关系,确保适用于不同的 工作场合。

参考文献:

- BORIN D, VAGANOV M, ODENBACH S. Magnetic training of the soft magnetorheological elastomers[J]. Journal of Magnetism and Magnetic Materials, 2024(589): 171499.
- [2] POPP K M, KRÖGER M, LI W, et al. MRE properties under shear and squeeze modes and applications[J]. Journal of Intelligent Material Systems and Structures, 2010, 21 (15): 1471-1477.
- [3] 胡国良,张杰,张佳伟,等. 基于电磁和磁流变弹性体的 复合隔振器设计及仿真分析[J]. 南昌工程学院学报, 2024, 43(3): 1-7.
 HUGL, ZHANGJ, ZHANGJW, et al. Design and simulation analysis of hybrid isolator based on electromagnetism and magnetorheological elastomer[J]. Journal of Nanchang Institute of Technology, 2024, 43(3): 1-7.
- [4] 胡国良,杨明,尧子健,等. 混合式磁流变弹性体隔振器 磁场仿真分析[J]. 南昌工程学院学报, 2023, 42(6): 1-5.
 HU G L, Yang M, Yao Z J, et al. Magnetic field simulation analysis of hybrid magnetorheological elastomer isolator[J]. Journal of Nanchang Institute of Technology, 2023, 42(6): 1-5.
- [5] RIGBI Z, JILKEN L. The response of an elastomer filled with soft ferrite to mechanical and magnetic influences
 [J]. Journal of Magnetism and Magnetic Materials, 1983, 37(3): 267-276.
- [6] WU J, GONG X, FAN Y, et al. Improving the magnetorheological properties of polyurethane magnetorheological elastomer through plasticization[J]. Journal of Applied Polymer Science, 2012, 123(4): 2476-2484.

- [7] GONG X L, ZHANG X Z, ZHANG P Q. Fabrication and characterization of isotropic magnetorhe ological elastomers[J]. Polymer Testing, 2005, 24(5): 669-676.
- [8] TIAN Y, HU Z W, GUO Y Q, et al. Experimental and theoretical investigation on magnetorheological elastomers containing carbonyl iron particles coated with silane coupling agent[J]. Smart Materials and Structures, 2024, 33 (6): 065028.
- [9] HU Y, WANG Y L, GONG X L, et al. New magnetorheological elastomers based on polyureth-ane/Si-rubber hybrid[J]. Polymer Testing, 2005, 24(3): 324-329.
- [10] FAN Y, GONG X, XUAN S, et al. Effect of cross-link density of the matrix on the damping pro-perties of magnetorheological elastomers[J]. Industrial & Engineering Chemistry Research, 2013, 52(2): 771-778.
- [11] JIANG W, YAO J, GONG X, et al. Enhancement in magnetorheological effect of magnetorheological elastomers by surface modification of iron particles[J]. Chinese Journal of Chemical Physics, 2008, 21(1): 87.
- [12] VON LOCKETTE P R, LOFLAND S E, KOO J H, et al. Dynamic characterization of bimodal particle mixtures in silicone rubber magnetorheological materials[J]. Polymer Testing, 2008, 27(8): 931-935.
- [13] HEMMATIAN M, SEDAGHATI R, RAKHEJA S. Char-

acterization and modeling of temperature effect on the shear mode properties of magnetorheological elastomers[J]. Smart Materials and Structures, 2020, 29(11): 115001.

第一作者:尧子健(1999—),男,硕士研究生,研究方向为磁 流变弹性体隔振器结构设计及性能分析。 E-mail:1620450267@qq.com。

通信作者:胡国良(1973—),男,教授,博士生导师,研究方向为磁流变智能器件及结构。E-mail:glhu@ecjtu.edu.cn。

(责任编辑: 熊玲玲)