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Abstract: To address the challenges in identifying damage characteristics caused by multimodal Lamb wave
propagation, dispersion effects, and signal attenuation in complex structures like steel bridge decks, this study
proposes a deep learning-based damage detection method for U-Rib-Deck joints in steel bridge decks. By embed-
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ding squeeze-excitation (SE) attention mechanisms and long short-term memory (LSTM) networks into convolu-
tional neural networks (CNN), combined with constructing datasets using Hilbert transform envelope curves, ef-
fective identification of typical fatigue damages in U-Rib-Deck joints is achieved. The research results demon-
strate: (D Under damage conditions, the direct wave packet exhibits a rightward phase shift and amplitude attenu-
ation, confirming the feasibility of using time-domain signal changes for damage detection. @ The SE-LSTM-
CNN model achieved validation accuracy and test accuracy of 93.67% and 95.00%, respectively, with the recog-
nition accuracy for all types of damage exceeding 90%, indicating the model’ s excellent applicability for dam-
age detection tasks in steel bridge deck U-Rib-Deck joints. 3) The classification accuracy of the SE-CNN and
LSTM-CNN models improved by 1.00% and 3.33%, respectively, compared to the baseline CNN model, while
the SE-LSTM-CNN model further improved accuracy by 7.33% and 5.00% compared to the single-improvement
models, validating the synergistic effectiveness of SE attention mechanism and LSTM for damage detection in
steel bridge deck U-Rib-Deck joints; furthermore, using the envelope curve dataset increased the model’s valida-
tion accuracy by 21.33% compared to raw signals, demonstrating this method’ s effectiveness in enhancing the
SE-LSTM-CNN model’s ability to identify Lamb wave damage features. (4 The intelligent detection software
developed based on MATLAB APP Designer achieved full-process optimization for damage detection, reducing
errors from human intervention. This research is expected to provide a new technical solution for damage detec-
tion in steel bridge deck U-Rib-Deck joints.
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Fig. 1 Finite element model of a steel bridge deck
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Tab.1 Steel bridge deck material properties
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Fig.2 Lamb wave propagation schematic
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Fig. 7 Lamb wave propagation process on steel bridge deck
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