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摘要：针对钢桥面板等复杂结构中Lamb波多模态传播、频散效应及信号衰减导致的损伤特征识别困难问题，本研究提出一种

基于深度学习的钢桥面板U肋-顶板节点损伤检测方法。通过将挤压和激励（squeeze-excitation，SE）注意力机制与长短时记

忆网络（long short-term memory，LSTM）嵌入卷积神经网络（convolutional neural networks，CNN），并结合 Hilbert 变换提取包

络曲线构建数据集，实现钢桥面板U肋-顶板节点典型疲劳损伤的有效识别。研究结果表明：① 损伤状态下直达波包相位呈

现右移且幅值衰减，验证信号时域变化特征在损伤检测上应用的可行性；② SE-LSTM-CNN模型在验证集与测试集分别达到

93.67%与95.00%的准确率，且各类损伤识别精度均超过90%，验证该模型在钢桥面板U肋-顶板节点损伤检测任务上有良好

适用性；③ SE-CNN与LSTM-CNN模型的分类准确率较基础CNN模型分别提升1.00%与3.33%；而SE-LSTM-CNN模型的分

类准确率较单一改进模型再提升7.33%与5.00%，验证SE注意力机制与LSTM的协同增效作用。此外，使用包络曲线数据集

使模型在验证集上的准确率较原始信号提升21.33%，说明该方法能有效增强SE-LSTM-CNN模型对Lamb波损伤特征的辨识

能力；④ 基于MATLAB APP Designer构建的智能检测软件实现了损伤检测全流程优化，降低了人工干预误差。本研究有望

为钢桥面板U肋-顶板节点的损伤检测提供新的技术方案。
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Abstract: To address the challenges in identifying damage characteristics caused by multimodal Lamb wave

propagation, dispersion effects, and signal attenuation in complex structures like steel bridge decks, this study

proposes a deep learning-based damage detection method for U-Rib-Deck joints in steel bridge decks. By embed-
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ding squeeze-excitation (SE) attention mechanisms and long short-term memory (LSTM) networks into convolu-

tional neural networks (CNN), combined with constructing datasets using Hilbert transform envelope curves, ef-

fective identification of typical fatigue damages in U-Rib-Deck joints is achieved. The research results demon-

strate: ① Under damage conditions, the direct wave packet exhibits a rightward phase shift and amplitude attenu-

ation, confirming the feasibility of using time-domain signal changes for damage detection. ② The SE-LSTM-

CNN model achieved validation accuracy and test accuracy of 93.67% and 95.00%, respectively, with the recog-

nition accuracy for all types of damage exceeding 90%, indicating the model’s excellent applicability for dam-

age detection tasks in steel bridge deck U-Rib-Deck joints. ③ The classification accuracy of the SE-CNN and

LSTM-CNN models improved by 1.00% and 3.33%, respectively, compared to the baseline CNN model, while

the SE-LSTM-CNN model further improved accuracy by 7.33% and 5.00% compared to the single-improvement

models, validating the synergistic effectiveness of SE attention mechanism and LSTM for damage detection in

steel bridge deck U-Rib-Deck joints; furthermore, using the envelope curve dataset increased the model’s valida-

tion accuracy by 21.33% compared to raw signals, demonstrating this method’s effectiveness in enhancing the

SE-LSTM-CNN model’s ability to identify Lamb wave damage features. ④ The intelligent detection software

developed based on MATLAB APP Designer achieved full-process optimization for damage detection, reducing

errors from human intervention. This research is expected to provide a new technical solution for damage detec-

tion in steel bridge deck U-Rib-Deck joints.
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随着交通基础设施服役年限增长与荷载复杂

化程度加剧，桥梁结构健康监测已成为现代工程领

域的重要研究方向。作为大跨度桥梁的主要承载

构件，钢桥面板U肋-顶板焊接节点长期承受车辆

循环荷载作用，即使荷载峰值低于材料屈服强度，

仍易在几何突变或应力集中区域产生疲劳裂纹及

隐性缺陷[1-3]。这类损伤具有隐蔽性强、扩展速率快

的特点，若未能及时检出将严重影响桥梁结构安全

性与服役寿命。因此，发展高效精准的损伤检测技

术对保障桥梁安全运维具有重要工程价值。Lamb

波检测技术因其无损检测特性及对微小损伤的高

敏感性，在结构健康监测中展现出独特优势[4]。该

技术通过捕获板结构中传播的弹性波与损伤相互

作用引发的信号畸变，可有效识别微小裂纹、局部

腐蚀等早期损伤。然而，传统方法依赖人工经验提

取模态参数，难以有效处理多模态传播、散射效应

及信号衰减带来的特征识别难题。CNN是一种常

用的深度学习模型，将 CNN 与 Lamb 波检测相结

合，可自动识别信号中的损伤特征[5]，有效避免传统

方法依赖人工经验提取模态参数的局限，提升损伤

识别的自动化水平与检测效率，为钢桥面板智能化

检测提供新的技术途径。

近年来，国内外科研人员对超声Lamb波与深

度学习相融合的无损检测技术发展及应用进行了

广泛研究。何存富等[6]对Lamb波在管道、板状结构

及复合材料检测中的应用进行研究，得出Lamb波

在其中的频散求解、模态选择及传感激励方法；蔡

建等[7]针对Lamb波多模态干扰问题，提出Lamb波

双面激励方法，通过理论建模与试验验证，有效抑

制多模式特性，提升近邻损伤监测精度，为结构健

康监测提供了新方法；PANDEY P 等[8]构建一维卷

积神经网络（1D-CNN）对铝板损伤信号进行分类识

别，证明了 Lamb 波时域波形识别损伤的可行性；

Akshay R 等[9]在1D-CNN模型中融入多头注意力机

制对铝板Lamb波损伤信号分类，通过特征通道权

重重构提升了非线性特征的提取能力；Jun W等[10]

将连续小波变换与CNN模型相结合，将Lamb波信

号转换为时频图像，通过深度卷积神经网络实现复

合材料层间损伤的自动识别与在线定位；Shang L

等[11]提出CNN-LSTM混合模型，对金属管道超声导
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波信号进行特征提取与时序建模，实现了94.80%的

损伤检测准确率，相较于基础的 CNN 和 LSTM 模

型，CNN-LSTM模型准确率更高，并验证了该模型

优异的抗噪声性能；田亮等[12]通过Lamb波对钢桥

面板U肋-顶板节点疲劳损伤检测数值仿真分析，

论证了200 kHz Lamb波信号时频分布差异明显，且

能量分布愈加集中，更利于实现损伤的检测；石林

泽等[13]从数值仿真和实桥试验两方面研究了Lamb

导波在钢桥面板中的传播机理，论证了采用Lamb

波检测钢桥面板疲劳裂纹的可行性。

当前基于Lamb波与深度学习相结合的无损检

测技术研究仍主要集中于板状结构和理论分析，在

处理钢桥面板等较为复杂工程结构时，目前仍面临

多重挑战，包括多模态传播、频散效应以及信号衰

减等问题。特别是在损伤特征识别方面，现有方法

对钢桥面板典型疲劳损伤的识别准确率仍难以满

足工程需求。针对上述问题，本研究提出基于SE-

LSTM-CNN 模型的钢桥面板 Lamb 波损伤检测方

法：首先基于Lamb波频散方程计算钢桥面板顶板

频散曲线，确定最优激励频率后，通过数值仿真构

建包含无损伤及三种不同损伤程度的Lamb波传播

信号数据集；其次设计 SE-LSTM-CNN 模型，利用

CNN提取局部信号特征，结合LSTM层建模Lamb

波信号时序相关性，引入 SE注意力机制实现损伤

信息通道的自适应增强；进一步设计消融实验验证

所引入模块的协同增效作用，同时对比SE-LSTM-

CNN模型在原信号与Hilbert变换包络曲线数据集

的识别准确率，验证Hilbert变换包络曲线对损伤特

征识别的增强效果；最终利用训练完成的模型实现

钢桥面板U肋-顶板节点的损伤检测，并基于MAT-

LAB APP Designer 完成检测程序封装。该研究成

果有望丰富结构健康监测领域的研究内容，为钢桥

面板的安全评估和维护提供技术支持。

1 数值仿真与数据集构建

1.1 有限元建模

正交异型钢桥面板主要由顶板、U型加劲肋及

横隔板等构件组成，其产生的疲劳裂纹主要集中

于三个区域：U肋与顶板及横隔板连接焊缝的焊趾

附近区域、横隔板弧形切口处以及 U 肋-顶板对接

焊缝部位 [14]。其中，U 肋-顶板连接部位焊趾处萌

生的疲劳裂纹常规目视检测手段难以有效识别，

为此，本文针对该连接部位开展损伤识别分析研

究。采用有限元软件Abaqus建立无损伤与含预设

损伤钢桥面板节段有限元模型如图 1所示，材料参

数如表 1所示，模型采用C3D8R减缩积分单元，通

过显式动力分析模拟 Lamb 波在钢桥面板顶板上

传播过程。

根据Lamb波在板状结构中的传播特性，其振

动位移场在板厚方向呈现特定的对称性分布，据此

可将振动模态划分为对称模态（S模式）与反对称模

态（A模式）两类基本形式，如图 2所示。并且其在

传播过程中具有明显的频散现象，即相速度与群速

度随频率改变而发生变化，导致不同频率成分的波

包产生时延差异。不同模态的波可能因相位匹配

而叠加，导致振幅显著增大[15]。Lamb波相速度cp频

散曲线公式如下

对称模式

4pq tan
πfdq

cp

+ ( )p2 - 1
2

tan
πfdq

cp

= 0 （1）

反对称模式

4pq tan
πfdp

cp

+ ( )p2 - 1
2

tan
πfdq

cp

= 0 （2）

由相速度频散曲线可确定群速度 cg频散曲线

公式如下

cg = c2
p

é

ë
êê

ù

û
úúcp - fd

dcp

d ( )fd
（3）

图1 钢桥面板有限元模型
Fig. 1 Finite element model of a steel bridge deck

表1 钢桥面板材料性质
Tab.1 Steel bridge deck material properties

顶板厚度

16 mm

弹性模量

210 GPa

泊松比

0.3

密度

7 850 kg/m³
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式中：cp为Lamb波相速度，cg为Lamb波群速度，fd为

频厚积，p2 =ω2 /c2
l - k 2 ，q2 =ω2 /c2

t - k 2 ，其中 cl 为纵

波速度，ct 为横波速度，ω = 2 πf 为角频率，k为波数。

根据钢桥面板的材料属性，运用 MATLAB 软

件求解Lamb波频散方程，可绘制出Lamb波在钢桥

面板顶板中传播的频散曲线[12]，如图3所示。

由图 3 频散曲线可知，随着频厚积的增大，

Lamb波高阶模态逐渐显现。为确保钢桥面板顶板

中仅稳定存在 S0 和 A0 模态，并有效实现 Lamb 波

的能量集中与分散效应抑制，本文选用中心频率为

200 kHz的5周期Hanning窗函数作为激励信号，如

图 4所示。该频率设置可避免激发高阶模态，同时

Hanning 窗的频谱特性有利于提升信号能量集中

度[12]，Hanning窗函数调制激励信号F（t）表达式如下

图2 Lamb波传播示意
Fig. 2 Lamb wave propagation schematic

图3 Lamb波频散曲线
Fig. 3 Lamb wave dispersion curve

图4 Hanning窗调制Lamb波信号
Fig. 4 The Hanning window modulates the Lamb wave signal
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ú1 - cosæ

è
ç

ö
ø
÷

2πfct
n
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式中：H（t）为Heaviside阶梯函数，t为时间，n为信号

周期，fc为信号中心频率，A为信号幅值。

在选定 200 kHz中心频率后，尽管抑制了高阶

模态，但S0和A0双模态仍共存。为解决多模态干

扰问题，需采用特定激励方式实现模态选择。如图

5所示，通过激励方式优化可实现模态分离，单面激

励因激发条件对称性缺失，同时激励S0和A0双模

态；双面对称激励可抑制 A0 模态而保留 S0 单模

态；双面反对称激励则抑制 S0 模态而保留 A0 单

模态[16]。本文通过在钢桥面板顶板上、下表面施加

对称激励的集中力荷载获得S0单模态信号，对无损

伤与含损伤钢桥面板模型，采用相同的激励点和接

收点设置进行Lamb波传播模拟，如图6所示。

图5 Lamb波激励方式
Fig. 5 Lamb wave excitation method

Lamb波本质上是纵波与横波在自由边界条件

下通过多次反射叠加形成的稳定波形。为确保结

构的位移随时间变化的稳定性，同时减小数值计算

中因网格大小引起的误差，网格尺寸∆l和时间步长

∆t应满足以下公式[17]

cl =
E( )1 - σ

ρ( )1 + σ ( )1 - 2σ
（5）

c t = E
2( )1 + σ ρ

（6）

Δl≤ c t

10fmax

（7）

Δt≤ Δl
cl

（8）

式中：E为板的弹性模量，σ为板的泊松比，ρ为板的

密度，ct为Lamb波横波速度，fmax 为激励信号中心

频率，c1为Lamb波纵波速度。

由式（7）和式（8）可确定钢桥面板Lamb波传播

区域的网格尺寸为1 mm，时间步长为0.1 μm。

1.2 数值仿真结果分析

Lamb 波在钢桥面板顶板传播特征如图 7 所

示。波从激励点位置开始沿顶板传播，形成近似圆

形波并向周围扩散；当波传播至顶板边界时会产生

反射波；当波遇到结构损伤时，会向损伤区域周围

散射并产生携带损伤信息的反射波，其中与直达波

传播方向相同的反射波分量将在接收点与后续直

达波发生叠加。

通过对比相同激励-接收路径下Lamb波损伤

信号与无损状态信号的时域特征（如图 8所示），可

观察到显著差异：相较于无损状态信号，含损伤工

况下信号曲线存在相位右移现象，且初始直达波包

络幅值明显降低，波形与趋势均符合Lamb波实际

传播特性[9-11]。

1.3 构建数据集

通过数值仿真分别建立四种损伤程度不同的钢

桥面板U肋-顶板节点工况，如表2所示，开展Lamb

波损伤特征信号采集。通过调整激励点和接收点在

顶板上的位置，针对每种损伤工况各采集250组有效

Lamb波信号，4种工况共采集1 000个样本，构建完

整数据集。为增强模型特征识别能力，对所有信号

进行Hilbert变换并提取包络曲线[18]，如图9所示。数

据集经随机打乱后，对数据集每个分类进行划分，其

中700条为训练集、300条为验证集，以使模型在整个

训练过程中对各个分类的敏感度更加均匀。

图6 激励点和接收点布置
Fig. 6 Arrangement of excitation and receiving points
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2 构建SE-LSTM-CNN模型

2.1 CNN

CNN是一种处理具有网格结构数据的深度学

习模型，其通过卷积运算实现特征提取功能，广泛

应用于图像分类、信号识别等领域[19]。根据输入数

据的维度特性，CNN可分为一维、二维及三维三种

类型。针对 Lamb 波这类时域信号的一维序列特

性，本文采用1D-CNN进行分析[20]，典型的1D-CNN

架构如图 10所示，由M个卷积层、L个全连接层及

池化层、分类层等模块构成。

卷积层作为 CNN 的核心组件，其功能是通过

可学习的卷积核对输入数据执行局部特征提

取。该层的计算过程可分为两个关键步骤：首先

图7 Lamb波在钢桥面板上传播过程
Fig. 7 Lamb wave propagation process on steel bridge deck

图8 Lamb波信号曲线
Fig. 8 Lamb wave signal curve
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每一个卷积核沿着输入数据进行滑动，每次滑动

后将对应的输入数据与卷积核内可训练的权值W l

il

相乘，将所有乘积求和得到卷积运算结果，该运算

过程常用*表示。随后将卷积运算结果引入可训

练偏置 bl

il ，并通过激活函数 f l(·) 映射，即可得到单

次卷积输出结果，如图 11 所示。第 l 层卷积层第 i

个卷积核在输入数据上的第 k 位置处卷积输出结

果 H l

il ,k
为

H l

il ,k
= f l( )Pl

k*W l

il + bl

il （9）

式中：W l

il ，bl

il 分别为第 l层卷积层第 i个卷积核的

权值和偏置，Pl
k 为第 l层卷积层第 k个位置处的输

入数据。

所有卷积核在输入数据上滑动进行卷积操作

后分别得出每个卷积核所对应的特征组，即下层池

化层的输入数据 H l

il

H l

il = [ ]H l

il ,1
,H l

il ,2
, ∙∙∙,H l

il ,nl - rl,H
l

il ,nl - rl + 1
（10）

式中：nl, rl分别为第 l层卷积层的输入数据的元素个

数和卷积核中的权值个数。

表2 数值仿真工况
Tab.2 Numerical simulation of working conditions

工况

工况一

工况二

工况三

损伤状况（长×宽×深）/mm3

无损伤

40×6×10

20×3×7

图9 Lamb波信号及包络图
Fig. 9 Lamb wave signal and envelope diagram

图10 CNN结构示意图
Fig. 10 Schematic diagram of the CNN structure

池化层通常会接续于卷积层之后，其核心功能

是对卷积层特征组执行下采样操作。与卷积运算

类似，下采样也是通过预设步长的滑动窗口在输入

特征组上遍历，实现空间维度压缩。主流池化操作

包含最大池化与平均池化两种：前者通过滑动池化

窗口选取局部区域内的最大特征值作为输出，后者

则计算该区域内特征值的算术平均值，如图 12 所

示。若池化窗口的尺度为 c，则第 l层卷积层第 i个

池化窗口在输入数据的第 k 个位置的平均化结果
图11 卷积运算过程

Fig. 11 Convolution process
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T l

il ,k
可表示为

T l

il ,k
=

H l

il ,k
+ H l

il ,k + 1
+ ∙∙∙ + H l

il ,k + c - 1

c
（11）

最大池化结果 T l

il ,k
可表示为

T l

il ,k
= max( )H l

il ,k
,H l

il ,k + 1
, ∙∙∙,H l

il ,k + c - 1
（12）

池化窗口进行池化操作后得出所对应的特征

组 T l

il ,1
，即下层的输入数据 T l

T l = [ ]T l

il ,1
,T l

il ,2
, ∙∙∙T l

il ,nl - rl,T
l

il ,nl - rl + 1
（13）

式中：nl, rl分别为第 l层池化层的输入数据的元素个

数和池化窗口长度。

全连接层和分类层位于 CNN 的最后，全连接

层将输入的特征组进行映射和激活函数激活后输

出为一维向量。最后由分类层对全连接层的输出

向量映射到区间（0,1），得到每个样本归属于各类别

的概率值。本文采用 softmax分类器，对于全连接

层输出的一维向量P在第 t个分类上的概率 at可表

示为

at = eθ

∑i = 1

z e
θi

（14）

式中：θ为[w,b]权值参数矩阵，z为样本的总分类数。

Softmax分类器通过计算输入数据在每个分类

的概率值，最终选择概率值最大的分类作为输出，

从而完成多分类任务。

2.2 SE注意力机制

注意力机制（attention mechanism）是深度学习

领域中的一种重要技术，它通过模仿人类的注意力

过程，为输入数据的不同部分分配不同的权重。SE

注意力机制是一种轻量型通道注意力机制，可无缝

嵌入现有CNN架构中。该机制通过动态调整各通

道特征权重，实现增强关键通道并抑制次要通道，使

网络能够自适应聚焦于更具任务相关性的特征表

征[21]。如图13所示，SE注意力机制包括三个步骤：

1）挤压：通过全局平均池化操作对输入特征图

进行空间维度降维。对每个通道的二维特征图执

行全局平均池化，将宽高维度的局部特征信息聚合

为单个标量值。此过程实现了对输入特征的空间特

征压缩，将每个通道的全局信息融合到一个数值中。

2）激励：采用包含瓶颈结构的两层全连接网

络：首先将通道维度非线性压缩至较低维空间，再

通过升维映射恢复原始通道数。在特征转换过程

中，利用Sigmoid激活函数生成归一化的通道注意

力权重值，表示每个通道的权重，量化各通道对当

前任务的贡献度。

3）加权：将训练出的通道权重与原始输入特征

组进行逐通道相乘，完成特征组的自适应加权，使

输出特征组在保留原始空间结构的同时，其各通道

权重特征分布得到优化，使网络聚焦于与任务相关

的关键特征。

2.3 LSTM

LSTM是一种特殊的循环神经网络，核心创新

在于引入细胞状态与三重门控机制，通过动态调

控信息流动，实现了对序列数据中长程依赖关系

的精准识别。如图 14 所示，LSTM 在处理每个时

间步时，将当前时间步输入 xt和前一时间步隐藏状

图12 池化操作
Fig. 12 Pooling operations

图13 SE注意力机制
Fig. 13 SE attention mechanism
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态ht-1拼接，作为3个门控机制的输入。遗忘门通过

Sigmoid 函数生成[0,1]区间值，决定旧细胞状态中

的保留信息 ft ；输入门首先通过Sigmoid函数筛选

出新细胞状态中的信息 it ，随后利用 tanh函数生成

候选记忆值 gt ；输出门通过Sigmoid函数决定当前

细胞状态向隐藏状态的暴露程度 ot ，将 ot 与更新后

的细胞状态 Ct 生成当前时间步隐藏状态 ht ，并输

出至下一个时间步，相关计算公式如下

ft = σ( )Wxf xt + Whf ht - 1 + b f （15）

it =σ( )Wxi xt + Whiht - 1 + bi （16）

gt = tanh( )Wxg xt + Whght - 1 + bg （17）

ot = σ( )Wxo xt + Whoht - 1 + bo （18）

Ct = ftCt - 1 + it gt （19）

ht = ot tanh( )Ct （20）

式中：σ 为 Sigmoid 激活函数，如式（21）所示；tanh

表示双曲正切激活函数，如式（22）所示

σ( )x = 1
1 + e-x （21）

tanh( )x = sin x
cos x

= ex - e-x

ex + e-x （22）

LSTM通过遗忘门动态筛选历史信息，输入门

控制新信息输入，输出门调节状态暴露，三者协同

实现跨时间步的信息筛选与传递，可对Lamb波信

号进行时序建模，精准捕捉波包到达时间、幅值衰

减等时序特征[11]。

2.4 模型架构设计

本文构建的SE-STM-CNN模型由3个卷积层、

3个池化层、SE注意力机制、LSTM层、全连接层及

分类层组成，其模块化设计采用“损伤特征提取-调

整通道权重-建模时序关系”的流程逐步处理Lamb

波信号，如图15所示。

图14 LSTM结构图
Fig. 14 Schematic illustration of the LSTM structure

图15 SE-LSTM-CNN模型
Fig. 15 SE-LSTM-CNN model

模型通过多模块协同实现损伤特征识别：卷积

层采用3×1大小的卷积核，步长1在Lamb波信号上

滑动，通过多组卷积核捕捉Lamb波信号中由损伤

引起的局部波形变化，并采用ReLU函数增强特征

表达能力；池化层执行3×1最大池化操作，通过步长

为1的池化窗口增强模型对信号时移误差及传感器

偏差的容错能力；在第2个池化层之后续接SE注意

力机制，通过全局平均池化汇总压缩通道信息，再

通过全连接网络计算各通道的重要程度，让与损伤

相关的频段和传播路径特征更突出，同时减弱噪声

干扰；LSTM层接收第 3个池化层输出的加权特征

组，利用其门控结构记录波包到达时间、相位变化
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等时序特征，选择性地保留重要信息，同时遗忘无

关信息；分类层将全连接层处理好的特征转换为分

类结果，通过Softmax分类器输出最终的损伤预测

结果。该模型中，卷积部分负责捕捉局部特征，

LSTM部分专注于时序规律，SE模块优化各通道权

重，三者协同优化损伤特征表达能力。

3 训练结果分析与消融实验

3.1 训练结果分析

运用 MATLAB 软件与构建的 SE-LSTM-CNN

模型对划分好的数据集进行训练。优化策略采用

Adam算法，设置最大训练轮次为 1 000轮，初始学

习率配置为 0.01。为提升训练效率并增强泛化性

能，实施分阶段学习率衰减机制，每完成 500 轮训

练周期，将当前学习率按比例缩减至原有值的十

分之一。

训练结果如图 16 所示，训练集准确率接近

100%时，验证集准确率为93.67%，各分类准确率均

超过90%，如表3所示，表明SE-LSTM-CNN模型在

该任务上表现出良好的适用性。

图16 SE-LSTM-CNN模型训练结果
Fig. 16 SE-LSTM-CNN model training results

3.2 消融实验

为验证CNN中SE注意力机制与LSTM层在钢

桥面板Lamb波损伤检测任务中的有效性，设计消

融实验，保持各参数与数据集划分不变，分别构建

以下对照模型进行训练：CNN、SE-CNN 及 LSTM-

CNN 模型。同时，为验证 Hilbert 变换对损伤特征

提取的增益作用，在相同参数下运用原始信号与包

络曲线信号分别训练 SE-LSTM-CNN 模型。训练

结果如图17所示。

将上述结果对比可以得出如表4所示，SE注意

力机制与LSTM分别使CNN模型在钢桥面板Lamb

波损伤检测任务上的准确率提升 1.00%与 3.33%，

而二者协同作用时准确率提升达 8.33%；此外，Hil-

bert变换预处理将SE-LSTM-CNN模型的准确率提

高 21.33%，验证了对采集到的 Lamb 波信号进行

Hilbert变换提取包络曲线更有利于SE-LSTM-CNN

模型识别信号中的损伤特征。

3.3 测试结果分析

为验证模型对信号变化的适应能力，改变传感

器布置方式，将激励点与接收点的位置重新排列，

形成与原始数据不同的检测布局 [22]。基于新布局

采集了 40 条 Lamb 波信号作为测试数据，在 MAT-

LAB平台上开发检测程序后，使用训练好的模型进

行预测测试。如图18所示，在钢桥面板损伤检测任

表3 各工况验证集准确率
Tab.3 The accuracy of the validation set for each

working condition
分类号

1

2

3

4

损伤状况（长×宽×深）/mm3

无损伤

40×6×10

20×3×7

10×1×4

验证集准确率

94.67%

96.00%

92.00%

92.00%

26



第6期 田 亮，等：基于深度学习的钢桥面板U肋-顶板节点Lamb波损伤检测

图17 消融实验结果
Fig. 17 Results of ablation experiments

务中，模型对全新采集的信号数据保持了95%的检

测准确率。测试结果表明，即使面对传感器位置变

动带来的信号特征变化，SE-LSTM-CNN模型仍能

保持稳定的检测性能，证明该模型对信号变化具有

较强的抗干扰能力，在钢桥结构健康监测场景中具

备良好的实际应用潜力。

3.4 软件封装

如图 19 所示，采用 MATLAB APP Designer 将

Lamb波信号调制、Hilbert变换算法、钢桥面板损伤

检测代码进行系统整合，构建钢桥面板损伤智能检

表4 各模型验证集准确率
Tab.4 The accuracy of each model validation set
数据集

包络曲线

包络曲线

包络曲线

包络曲线

原信号

模型

CNN

SE-CNN

LSTM-CNN

SE-LSTM-CNN

SE-LSTM-CNN

验证集准确率

85.33%

86.33%

88.67%

93.67%

72.33%

图18 测试集结果

Fig. 18 Test set results
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测软件。该软件可实现从信号调制到损伤检测的

自动化处理，有效抑制了多环节误差传递效应，在

保障检测精度的同时，降低了对专业人员的操作依

赖，提升了检测效率。

4 结论

本文采用深度学习与Lamb波检测技术结合的

方法，对钢桥面板U肋-顶板节点的损伤检测进行

研究，得到以下结论：

1）通过对比相同激励-接收路径下损伤与无损

状态下的Lamb波信号曲线，发现损伤信号直达波

包的相位呈现显著右移现象，且幅值出现明显衰

减，表明损伤会导致信号时域特性发生可量化的改

变，验证了利用深度学习模型训练Lamb波信号实

现钢桥面板损伤检测的可行性。

2）提出的 SE-LSTM-CNN 模型在训练集准确

率接近100%的情况下，验证集准确率达到93.67%，

各类损伤分类准确率均超过90.00%，且在新测试集

上的准确率为 95.00%。表明该模型对钢桥面板U

肋-顶板节点的损伤检测具有较高精度与适用性。

3）通过消融实验对比分析发现：SE-CNN 与

LSTM-CNN 模型在损伤特征识别准确率方面较

基础CNN模型分别提升1.00%与3.33%，SE-LSTM-

CNN 融合模型的分类准确率较单一改进模型再

提升 5.00%与 7.33%，验证了多模块协同优化的有

效性。此外，基于 Hilbert 变换提取的包络曲线数

据集训练时，模型验证集准确率较原始信号数据

集提高 21.33%，表明 Hilbert 变换后的信号包络曲

线更有利于深度学习模型捕获 Lamb 波中的损伤

信息。

4）通过整合Lamb波信号调制、Hilbert变换及

损伤检测算法，基于MATLAB APP Designer构建钢

桥面板损伤智能检测软件。实现了从原始信号调

制、预处理、特征分析到损伤识别的全流程优化，缩

短检测周期，降低人工干预，有望为钢桥面板的快

速、低成本维护提供技术支持。
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