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Abstract: To address the problem of detail feature loss of low-altitude small objects during multi-layer down-sam-
pling, a small object detection model ES-YOLO is proposed, based on detail feature enhancement and redundant
feature suppression. The method is built upon the lightweight YOLOvSs framework and constructs a dual-feature
optimization mechanism consisting of spatial detail enhancement (SDE) and redundant feature suppression (RFS)
modules. SDE collaborates dynamic upsampling with transposed convolution upsampling to achieve scale-adap-
tive fine recovery of spatial details and structural consistency reconstruction, enhancing small object texture and
boundary information. RFS models feature dependencies across both channel and spatial dimensions to suppress
background noise and redundant responses, improving feature purity and object saliency. Experimental results

show that ES-YOLO achieves improvements of 12.97 percentage point and 9.22 percentage point in mAP@0.5
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and mAP@][0.5:0.95], respectively, compared to YOLOVSs on the VisDrone2019 dataset. The proposed model
requires only 38.59% of the GFLOPs of YOLOv8m, achieving a significant reduction in computational cost.
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Tab.2 Ablation experiments on small object detection methods based on detail feature enhancement

and redundant feature suppression %
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Tab.4 Ablation study of RFS %
5 P2 P3 P4 P5 P R mAP@0.5 mAP@[0.5:0.95]
41 VvV VvV VvV vV 47.20 40.07 38.08 21.82
42 VvV vV V — 4821 4147 39.10 22.10
43 vV VvV — — 49.85 43.99 39.40 22.92
44 — V — — 48.33 42.83 39.94 23.24
45 — — vV — 47.64 42.61 39.61 22.55
416 — — — vV 49.66 39.92 38.74 22.55
47 VvV — — — 49.81 41.57 40.54 23.56




£ ] G5, A ES-YOLO : & T A 19 RHIESE 38 5 TUARFF AL ) /) ARG 7 12 49

#5 DOTA #HIE&E EAREREBFIMHEEXTLE

Tab.5 Performance comparison of different models

on the DOTA dataset %
Btk FEER AP50 AP75 mAP
YOLOVS5s 5530  34.13  33.54
DOTAvI.0 HIC-YOLOv5"" 59.86 3859  37.02
ES-YOLO (A3C) 61.54 41.40 38.86
YOLOVS5s 4689 2757 27.85
DOTAvI.5 HIC-YOLOv5"" 4947 2938  29.04

ES-YOLO (A3 ) 50.66 30.38 30.17

7E DOTAv1.5 B4 4E [, ES-YOLO H AU iy mAP ik
230.17%, AR = T MR BRI R, X e
2 SRLIOIE T AR SCHRE M A et vk A Bk, IR R T
TRAIYE Z AL LA PR IR ) e

3 it

1) A SCH: 1 1Y ES-YOLO #5858 35 A1) 1Y SDE
BEHCAI RFS BB, figt ke 1/ H ARSI b i 4755 25 2%
FITCARRFIE TP, BT TRRS . 5258
25K W], ES-YOLO 7E 2 hrifE £ i 48 - 3R 3L
S, UHAE R 220 5 N R/ HARKI b, B 3
P RMERITERCR . X AFIZBI Al SRt
Jite B e i v ELA Tz BN IV T RERS R e
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2) A2k, ES-YOLO #7E T A Ak it T F1 fig 2
T W RlA W R PR AR, U TR S 3 A
VO a4 i i A R B TE ML | A sh kit
THLES A i T B3 et Wi R 55 5= b, ES-
YOLO eSS A shAS i T3 B SRR 2548
B AL SRR TS RE . FEE 5GP
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AT T WA HE Bl 52 38 it it A 1 ) A g
b H sy it SR AR S L ek

Sk

[1] LIBY, OUYANG W L, SHENG L, et al. GS3D: an effi-
cient 3D object detection framework for autonomous driv-
ing[C]//2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 15-20, 2019, Long
Beach, CA, USA. New York: IEEE, 2019: 1019-1028.

[2] e, 15, TR, JETEGH YOLOVS R At i 44
ENIELL]. ARARSSE R, 2025, 42(3): 117-126.
YANG Y, XU P, XU F. Lightweight road crack detection
algorithm based on improved YOLOvVS8n[J]. Journal of

East China Jiaotong University, 2025, 42(3): 117-126.

(31 Feik, XUZAE, DR, 55, H Tkt RetinaNet (418 2 ]

A5 A 383 ], A 7R 28 R 2R 2 4z, 2024, 41(6):
74-80.
CHENG L, LIU J W, ZHOU Q Z, et al. Remote sensing
image object detection algorithm based on improved Ret-
inaNet[J]. Journal of East China Jiaotong University,
2024, 41(6): 74-80.

[4] SAFFARINI R, KHAMAYSEH F, AWWAD Y, et al. Dy-
namic generative R-CNN[J]. Neural Computing and Ap-
plications, 2025, 37(10): 7107-7120.

[5] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single sh-
ot MultiBox detector[M]//Computer Vision-ECCV 2016.
Cham: Springer International Publishing, 2016: 21-37.

[6] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss
for dense object detection[C]//2017 IEEE International
Conference on Computer Vision (ICCV), October 22-29,
2017, Venice, Italy. New York: IEEE, 2017: 2999-3007.

[77] MURAT A A, KIRAN M S. A comprehensive review on
YOLO versions for object detection[J]. Engineering Sci-
ence and Technology, an International Journal, 2025, 70:
102161.

[8] CHENY M, YUAN X B, WANG J B, et al. YOLO-MS:
rethinking multi-scale representation learning for real-
time object detection[J]. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2025, 47(6): 4240-
4252.

[91 DOHERTY J, GARDINER B, KERR E, et al. BiIFPN-YO-
LO: one-stage object detection integrating Bi-Directional
Feature Pyramid Networks[J]. Pattern Recognition, 2025:
111209.

[10] WANG Y, WEL'Y S, WU Z Z, et al. Adaptive convolutional
neural network for aluminum surface defect detection[J].
Computational Materials Science, 2023, 227: 112262.

[11] PARK H, PAIK J. Pyramid attention upsampling module
for object detection[J]. IEEE Access, 2022, 10: 38742-
38749.

[I2]HEY S, SHEN L R, HU Y. SCW-YOLO: an improved al-
gorithm for fall detection based on deep learning[M]//Ad-
vanced Intelligent Computing Technology and Applica-
tions. Singapore: Springer Nature Singapore, 2024: 408-
418.

(13] TRUEAR, J FOR, SKERAR, 5. S0P 2 1m0 SR I A I Y YO-
LOv5s BRI ST 0], THEAL TR 5 0 H, 2024, 60
(7): 306-314.

XU H J, TANG Z Q, ZHANG ] D, et al. Research on opti-
mization of YOLOVSs detection algorithm for steel sur-

face defect[J]. Computer Engineering and Applications,



N

50 R & OR AR

2025 4

2024, 60(7): 306-314.

[14] TANG S'Y, ZHANG S, FANG Y N. HIC-YOLOVS5: im-
proved YOLOvS5 for small object detection[C]//2024
IEEE International Conference on Robotics and Automa-
tion (ICRA), May 13-17, 2024, Yokohama, Japan. New
York: IEEE, 2024: 6614-6619.

[15] ZHANG M, YIN L J. Solar cell surface defect detection
based on improved YOLOvVS5[J]. IEEE Access, 2022, 10:
80804-80815.

[16] KANG M, TING C M, TING F F, et al. BGF-YOLO: en-
hanced YOLOvVS8 with multiscale attentional feature fusion
for brain tumor detection[M]//Medical Image Computing
And Computer Assisted Intervention-MICCAI 2024. Ch-
am: Springer Nature Switzerland, 2024: 35-45.

[17] SHANG J C, WANG J S, LIU S B, et al. Small target de-
tection algorithm for UAV aerial photography based on
improved YOLOVS5s[J]. Electronics, 2023, 12(11): 2434.

[18] LIU H'Y, SUN F Q, GU J, et al. SF-YOLOVS: a light-
weight small object detection algorithm based on im-
proved feature fusion mode[J]. Sensors, 2022, 22(15):
5817.

[19] LI X R, ZHANG J J, SUN L H. ECA-YOLOVS5: multi
scale infrared salient target detection algorithm based on
anchor free network[C]//Ninth Symposium on Novel Pho-
toelectronic Detection Technology and Applications. No-
vember 2-4, 2022. Hefei, China. SPIE, 2023: 24.

[20] MIAO L Z, LI N, ZHOU M L, et al. CBAM-Yolov5: im-
proved Yolov5 based on attention model for infrared ship
detection[C]//International Conference on Computer Gra-
phics, Artificial Intelligence, and Data Processing (IC-
CAID 2021). December 24-26, 2021. Harbin, China. SP-
IE, 2022: 33.

[21] SUN Y, WANG W N, ZHANG Q Y, et al. Improved YO-
LOvS5 with transformer for large scene military vehicle de-
tection on SAR image[C]//2022 7th International Confer-
ence on Image, Vision and Computing (ICIVC), July 26-
28,2022, Xi’an, China. New York: IEEE, 2022: 87-93.

[22] LIU S, QI L, QIN H F, et al. Path aggregation network for
instance segmentation[C]//2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, June 18-23,
2018, Salt Lake City, UT, USA. New York: IEEE, 2018:
8759-8768.

[23]1 ZHU X K, LYU S C, WANG X, et al. TPH-YOLOVS5: im-
proved YOLOVS based on transformer prediction head
for object detection on drone-captured scenarios[C]//2021
IEEE/CVF International Conference on Computer Vision
Workshops (ICCVW). October 11-17, 2021. Montreal,

BC, Canada. New York: IEEE, 2021: 2778-2788.

[24] LIU W Z, LU H, FU H T, et al. Learning to upsample by
learning to sample[C]//2023 IEEE/CVF International Co-
nference on Computer Vision (ICCV), October 1-6, 2023,
Paris, France. New York: IEEE, 2023: 6004-6014.

[25] LT Y X, DUA A, REN F B. Light-weight RetinaNet for
object detection on edge devices[C]//2020 IEEE 6th World
Forum on Internet of Things (WF-IoT). June 2-16, 2020.
New Orleans, LA, USA. New York: IEEE, 2020: 1-6.

[26] LUO J, LIU Z C, WANG Y B, et al. Efficient small ob-
ject detection you only look once: a small object detec-
tion algorithm for aerial images[J]. Sensors, 2024, 24
(21): 7067.

[27] LIU H Y, DUAN X H, LOU H T, et al. Improved GBS-
YOLOVS algorithm based on YOLOVS applied to UAV
intelligent traffic[J]. Scientific Reports, 2023, 13: 9577.

[28] LI X L, BAO Y F. Small target detection algorithm for
UAV aerial photography based on improved YOLO
V8n[C]//2024 6th International Conference on Data-driv-
en Optimization of Complex Systems (DOCS), August
16-18, 2024, Hangzhou, China. New York: IEEE, 2024:
870-875.

F—1EE AL (1988—) , 5, ml %, 1 w4 0,
G 10 R AL SE M AMLEE B . E-mail : 1j_zzl@ecjtu.

edu.cn,

BIS1EE P 0R (1979 —) , L, #8% , +, 4300,
SRR Y7 SENR O SN RS I SR Y S N E 7 N DS
N JLVHE TN 2EE LA R HFEAA 55 1
SRR I B Rl G 2R AL 38 4E B B K K o E- mail:
1wj06051979@163.com.,

(THHEGiR: % %)



