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摘要：针对低空小目标在多层下采样过程中细节特征丢失的问题，提出一种基于细节特征增强与冗余特征抑制的小目标检测

模型ES-YOLO。该方法以轻量化YOLOv5s为基础，构建由空间细节增强模块（SDE）与冗余特征抑制模块（RFS）组成的双重

特征优化机制。SDE通过动态上采样与反卷积上采样协同实现尺度自适应的空间细节精细恢复与结构一致性重建，增强小

目标纹理与边界信息；RFS从通道与空间多维度建模特征依赖关系，抑制背景噪声与冗余响应，提高特征纯净度与目标显著

性。实验结果表明，ES-YOLO 在 VisDrone2019 数据集上的 mAP@0.5 与 mAP@[0.5:0.95]较 YOLOv5s 分别提升 12.97 个百分

点与9.22个百分点，计算量GFLOPs仅为YOLOv8m的38.59%。
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Abstract: To address the problem of detail feature loss of low-altitude small objects during multi-layer down-sam-

pling, a small object detection model ES-YOLO is proposed, based on detail feature enhancement and redundant

feature suppression. The method is built upon the lightweight YOLOv5s framework and constructs a dual-feature

optimization mechanism consisting of spatial detail enhancement (SDE) and redundant feature suppression (RFS)

modules. SDE collaborates dynamic upsampling with transposed convolution upsampling to achieve scale-adap-

tive fine recovery of spatial details and structural consistency reconstruction, enhancing small object texture and

boundary information. RFS models feature dependencies across both channel and spatial dimensions to suppress

background noise and redundant responses, improving feature purity and object saliency. Experimental results

show that ES-YOLO achieves improvements of 12.97 percentage point and 9.22 percentage point in mAP@0.5
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and mAP@[0.5:0.95], respectively, compared to YOLOv5s on the VisDrone2019 dataset. The proposed model

requires only 38.59% of the GFLOPs of YOLOv8m, achieving a significant reduction in computational cost.
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在计算机视觉领域，目标检测一直是基础且

关键的研究方向，广泛应用于自动驾驶 [1]、路面病

害监控[2]和遥感图像处理[3]等实际场景。随着深度

学习的发展，目标检测算法的性能得到了显著提

升。主流检测算法可分为两阶段（Two-stage）与单

阶段（One-stage）两类。两阶段检测方法以R-CNN

系列[4]为代表，先生成候选区域再进行分类与回归，

具有较高精度但计算复杂度较大；单阶段方法如

SSD[5]、RetinaNet[6]、YOLO 系列 [7- 9]则通过端到端的

预测框架在速度上具有明显优势，成为实时检测的

主流方案。然而，在复杂背景下的小目标检测仍面

临显著挑战。

小目标在图像中所占像素有限，其特征在深

层下采样过程中易被削弱甚至丢失。因此，传统

的目标检测模型难以捕捉关键细节信息，从而降

低检测精度与稳定性。YOLO 系列在多目标快速

检测方面虽表现优异，但对于小目标的特征表达

与细节保持仍显不足。为解决这一问题，已有研

究主要从上采样重建与特征增强两个方向展开。

在上采样方面，Wang 等 [10]通过融合注意力与可变

形卷积提升特征恢复效果；Park等[11]在特征金字塔

中引入语义注意以减少上采样过程中的语义损

失；He 等 [12]与徐洪俊等 [13]使用 CARAFE 替代传统

上采样算子以增强细节捕捉能力。但这些方法在

提升特征还原的同时，往往增加了计算复杂度，并

可能引入噪声响应，影响检测稳定性。在特征增

强方面，Tang等[14]、Zhang等[15]、Kang等[16]通过增加

微小检测头以提升高分辨率特征的利用率；Shang

等[17]与Liu等[18]采用多层特征融合策略以改善检测

性能，但仍存在过度增强背景细节的副作用。Li

等[19]、Miao等[20]与 Sun等[21]进一步引入注意力机制

强化特征选择能力，但未充分利用多维特征，导致

冗余特征抑制不足。

针对低空小目标在多层下采样过程中细节特

征丢失的问题，本文提出一种基于细节特征增强与

冗余特征抑制的小目标检测方法ES-YOLO（detail

feature enhancement and redundant feature suppres-

sion YOLO）。该方法以轻量化 YOLOv5s 为基础，

构建由 SDE 与 RFS 组成的双重特征优化机制。

CARAFE 和 Deformable/Dynamic upsampling 等方

法主要聚焦于局部区域的细节恢复，但在全局结构

重建方面仍有提升空间。SDE模块不仅通过动态

上采样恢复细节，还通过基于反卷积上采样的空间

结构一致性重建来恢复小目标的纹理和边界信息，

进一步提升细节恢复的丰富度。同时，区别于

CBAM/ECA等注意力机制单纯通过加权通道来增

强特征，RFS模块的多维度冗余特征过滤机制，从

通道和空间两个维度进行冗余信息抑制，突出小目

标的显著结构特征。因此，ES-YOLO 的双重特征

优化机制在细节恢复与冗余抑制的协同作用下，可

以表现出更加优异的检测性能。

1 ES-YOLO模型结构及原理

1.1 ES-YOLO方法结构

如图1所示，ES-YOLO整体框架以轻量化YO-

LOv5s为基线模型，在颈部结构上将原三尺度融合

改为四尺度特征融合，即采用 PANet[22]将 P2（160×

160）、P3（80×80）、P4（40×40）、P5（20×20）进行自顶

向下与自底向上的双向聚合，充分利用浅层细节与

深层语义的互补性。针对小目标在下采样过程中

易丢失细节特征的问题，本文提出了以下 3方面的

改进。

1）设计SDE：为了恢复下采样过程中小目标的

纹理与边缘信息，SDE模块通过动态上采样与反卷

积上采样协同工作。动态上采样根据局部特征自

适应分配插值权重，从而精确恢复细节；而反卷积
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上采样利用可学习卷积核进一步重建空间结构与

边界信息，显著提高细节恢复的精度。两者协同作

用下，SDE模块能够有效地丰富特征图中的细节信

息，增强小目标的检测能力。

2）新增高分辨率检测头（P2）与 RFS：在 YO-

LOv5基线的三尺度检测头（P3，P4，P5）之外，新增

高分辨率检测头 P2。P2 从主干网络第 1 个 C3 模

块引出，并与 SDE 模块提取的浅层高分辨率特征

融合作为输入。与第 1 个 C3 模块的特征相比，此

时 P2 的细节特征更加丰富，但也伴随更多冗余特

征。为了抑制冗余特征对深层次特征提取的干

扰，设计了 RFS。RFS 模块通过从通道与空间维

度建模特征依赖关系，采用加权筛选与响应强化

的方法，抑制冗余特征，突出小目标的显著结构

特征。

3）独立小目标检测头的引入：受 Zhu 等 [23]与

Liu 等[18]的研究启发，本文在新增的高分辨率检测

层P2引入独立的小目标检测头，用于输出该层的分

类与回归结果。该检测头针对极小目标的尺度特

征进行了轻量化设计，能够充分利用浅层高分辨率

特征，实现对极小目标的精细检测与高置信度识

别，从而进一步提高检测精度。

1.2 SDE

YOLOv5s的双线性插值方法虽然计算高效，但

在复杂场景中无法有效保留整体边缘和局部纹理

信息。为了解决这一问题，本文设计了 SDE，通过

动态上采样与反卷积的协同作用，实现尺度自适应

的空间细节恢复与结构一致性重建。

1）动态上采样层（Dysample）。Liu等[24]提出了

一种轻量级的动态上采样方法Dysample，通过内容

感知的方式有效恢复细节。其基本思想是通过点

采样代替传统的内核卷积操作来实现上采样，从而

避免了动态卷积的高计算开销。具体来说，Dysam-

ple 通过线性投影生成偏移量，并利用 PyTorch 的

grid_sample函数重新采样输入特征图。

偏移量是通过一个线性层生成的，线性层的输

入是经过卷积处理的特征图，输出为每个上采样点

的偏移量。该偏移量用于调整原始特征图中每个

采样点的位置，重新定义其采样区域，从而增强特

征图的空间细节。基于生成的偏移量，结合原始的

网格采样位置，形成新的采样集。该采样集通过将

原始采样网格与偏移量叠加得到

{O = linear(X )
S =G +O

（1）

式中：X 为输入特征图；G 原始的网格采样位置；

图1 ES-YOLO方法结构
Fig. 1 Structure of the ES-YOLO methodology
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O 为生成的偏移量；S 为新的采样位置。

使用 grid_sample函数基于采样集重新采样特

征图，从而得到高分辨率的特征图。这一过程通过

以下公式表示为

X ′= grid_sample( )X,S （2）

通过这种方式，Dysample实现了比传统上采样

方法更灵活的采样策略，同时保持了计算效率，避

免了额外的计算负担。

2）反卷积层（*Conv）。在动态上采样获得初

步放大特征后，反卷积通过可学习的卷积核参数实

现空间细节重建与边界结构修复。相比单纯的插

值操作，反卷积能在尺度恢复过程中引入局部空间

关联建模能力，使特征映射更具结构一致性。

3）特征融合。最终，通过 Concat 操作沿通道

维度融合两支输出

Fsdem =Concat( )Ydyn,Y*conv （3）

动态上采样与反卷积通路被赋予同等的权重，

二者以并行、等比例的方式协同工作，而非通过可

学习的权重进行自适应融合。这种设计的初衷是

充分利用两种不同上采样机制的优势——动态上

采样能自适应地生成上采样核以保留细节，而反卷

积则通过固定的学习核来恢复结构信息——从而

从不同角度共同增强空间细节。两条通路分别独

立处理输入特征，然后将输出的特征图进行逐元素

相加。这种直接的融合方式确保了两种上采样结

果的特征得以直接互补，为后续检测层提供更精确

的细节输入。

1.3 冗余特征抑制模块(RFS)

在SDE模块通过动态上采样和反卷积增强细

节后，生成的最高分辨率特征（P2）包含了丰富的细

节信息和背景噪声。由于这一层特征图融合了多

层次信息，冗余特征与背景噪声较为显著，因此需

要进行冗余特征抑制。为了有效地去除冗余特征，

确保小目标的显著特征能够被准确提取，提出了

RFS模块。RFS模块通过从通道、空间和原始特征

维度建模特征依赖关系，采用加权筛选和响应强化

的方法，抑制冗余特征的影响，突出小目标的结构

特征。RFS 模块的工作原理是首先对最高分辨率

的特征图进行多维度优化，去除无关的冗余信息，

确保特征图的“纯净度”，然后通过增强有效特征的

响应，使模型更加专注于小目标的显著特征。

如图2所示，RFS模块包括以下4个步骤。

1）特征通道扩展与多尺度特征提取。如图 2

所示，RFS模块首先通过 1×1卷积扩展输入特征图

的通道数，确保特征信息更加丰富。接着，将扩展

后的特征图划分为5组，其中 X1 保持原始特征，X2

到 X5 通过不同大小的倒置瓶颈层（分别为 3×3、5×

5、7×7、9×9卷积核）进行处理。这些卷积核有助于

捕捉不同尺度的特征信息，提升对多种目标尺度的

适应性。这些特征图的数学表达式可以统一表

示为

Yi =BottleNeckk( )Xi , i = 2,3,4,5 （4）

式中：k 为不同的卷积核大小；Yi 为通过倒置瓶颈

层处理后的特征图。

2）多尺度特征融合。 Yi 经过 1×1卷积后进行

多尺度拼接融合，生成包含不同语义信息的综合特

征图。通过这种融合方式，特征图能够同时保留浅

层细节信息与深层语义信息，为后续的目标检测任

务提供更为丰富的输入。

3）跨维度依赖关系建模。RFS模块接着对融

合后的特征通过3个分支对不同维度的依赖关系进

行建模，确保特征间的有效交互，去除冗余信息。

第1个分支专注于捕捉通道维度与水平空间维

度（高度）之间的依赖关系。为了实现这一目标，输

图2 RFS结构
Fig. 2 RFS structure
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入特征图首先沿高度轴（H轴）旋转90º，使得原本的

水平空间信息转变为“垂直”方向。接着，通过 Z-

pool层（结合全局平均池化和全局最大池化）对旋

转后的特征图 RH ( )X 在高度和通道维度上进行平

均和最大池化，生成蕴含跨维度信息的特征图。这

些特征图随后经过一个标准卷积层和Sigmoid激活

函数，生成用于调整原始特征图权重的注意力系

数，并应用于原始特征图，以实现对通道-水平空间

依赖关系的精细调整。该过程可以用公式表示为

AH = Sigmoid( )Conv( )Z - pool( )RH ( )X （5）

第2个分支则负责捕捉通道维度与垂直空间维

度（宽度）之间的依赖关系。其操作与第一个分支

类似，但不同之处在于，这里特征图是沿宽度轴（W

轴）旋转90°进行处理。通过这一旋转，原本的垂直

空间信息被转变为“水平”方向，便于捕捉通道与垂

直空间之间的交互。生成的注意力权重同样应用

于原始特征图，以强调或抑制特定的特征。该过程

可以用公式表示为

AW = Sigmoid( )Conv( )Z - pool( )RW ( )X （6）

第 3个分支与传统的空间注意力机制相似，它

捕捉特征图在水平和垂直空间维度之间的依赖关

系。尽管其操作与通道-水平空间交互分支有相似

之处，但此分支更侧重于纯粹的空间维度间的交

互。该过程可以用公式表示为

AS = Sigmoid( )Conv( )Z - pool( )X （7）

4）注意力机制与特征加权。经过以上 3个分

支的处理后，将得到的3个注意力权重 AH，AW，AS

分别应用于输入特征图，从而对冗余信息进行抑

制，并突出小目标的显著结构特征。最终，3个分支

的输出特征图会进行加权平均，得到最终的输出特

征图 Y 。这一权过程确保了冗余信息被有效过滤，

同时增强了小目标的显著特征，减少背景噪声的干

扰，从而进一步提高目标的检测精度。该过程可以

表示为

Y = 1
3( )AH X +AW X +AS X （8）

1.4 损失函数

YOLOv5s在每个尺度的特征图上对网格位置

进行预测，并将预测与标注进行匹配以计算损失，

从而指导网络收敛。为同时优化定位、目标性与类

别判别，本文采用由定位损失 Lloc 、置信度（目标性）

损失 Lobj 与分类损失 Lcls 加权组成的总损失

L = αLloc + βLobj + γLcls （9）

式中：α，β，γ分别为定位、目标性、分类三项的权

重系数。

2 实验结果与对比分析

2.1 系统软硬件配置及参数设置

实验在搭载 Intel(R) Core(TM) i9-9900KF CPU

@ 3.60 GHz 和 NVIDIA GeForce RTX 4080 GPU 的

工作站上完成。算法基于 PyTorch 框架实现，并使

用 CUDA 12.2 进行加速训练。本文基于YOLOv5s

为基线进行实验验证，将输入图像大小设置为640×

640，Batch size 设置为 16，训练 Epoch 设置为 300，

深度和宽度分别设置为0.33和0.50，使用提前停止

策略来避免过度拟合。其中Patience设置为 15，优

化器使用Adam，初始学习率为 1×10-3，损失函数的

权重分别设置为0.05（定位），0.50（目标）和0.25（分

类），对应式（9）中的 α，β ，γ。其他参数采用YO-

LOv5s默认参数。

2.2 性能比较与结果分析

为全面评估 ES-YOLO 在不同场景下的小目

标检测性能，选用 VisDrone 2019 公开数据集进行

实验。模型性能通过 Precision (P)、Recall (R)、

mAP@0.5、mAP@[0.5:0.95] 和 GFLOPs 指标进行

评估。

在 VisDrone 2019 测试集上（表 1），ES-YOLO

的 mAP@0.5 为 40.54%，较 YOLOv5s 提升 12.97 个

百分点；mAP@[0.5:0.95]为 23.65%，较YOLOv5s提

表1 VisDrone 2019测试集上的算法比较

Tab.1 Comparison of the algorithms on the
VisDrone 2019 test set

方法

YOLO3-tiny

YOLOX-tiny

YOLOv5n

YOLOv5s

YOLOv8s

YOLOv8m

RetinaNet[25]

ESOD-YOLO[26]

SF-YOLOv5[18]

GBS-YOLOv5[27]

Li等[28]

HIC-YOLOv5[14]

ES-YOLO

mAP@0.5/%

16.20

23.10

23.10

27.57

34.20

39.20

29.00

29.30

34.30

35.30

36.40

36.95

40.54

mAP@[0.5:0.95]/%

6.30

12.40

11.50

14.43

19.90

23.10

16.90

16.60

18.20

20.00

20.10

20.85

23.65

GFLOPs/G

11.7

3.2

4.2

16.5

28.7

79.3

21.0

14.3

—

—

—

31.2

30.6
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升9.22个百分点。同时，ES-YOLO的GFLOPs仅为

30.60 G，仅为YOLOv8m的 38.59%，说明本模型在

低计算成本下仍能保持高检测精度。

与其他改进算法对比：SF- YOLOv5[18]、Reti-

naNet[25]、ESOD-YOLO[26]、GBS- YOLOv5[27]、HIC- Y-

OLOv5[14] 及Li等[28]的方法均聚焦特征融合优化，提

升了特征层间语义交互，但未充分考虑冗余特征的

抑制。ES-YOLO在此基础上同时关注特征细节增

强与多维度冗余过滤，在有效提升小目标特征表达

力的同时减少噪声干扰，从而在精度与鲁棒性上均

表现最优。

2.3 视觉对比分析

图 3对比了YOLOv5、HIC-YOLOv5与ES-YO-

LOv5在VisDrone图像上的检测结果。由图3可见，

ES-YOLOv5能识别出更多被遮挡或远距离的小目

标，尤其在红色箭头标注区域中，HIC-YOLOv5 未

能检测出的目标被准确识别，表明本模型在复杂场

景下具有更强的细节感知能力。

2.4 消融实验

为验证本文提出的 双重细节特征增强策略中

各模块的有效性，在 VisDrone 2019 数据集上进行

了多组消融实验。实验通过逐步添加或移除不同

模块的方式，分析各组件对整体性能的影响，其中

“√”表示模型中包含该模块。

1）基于细节特征增强与冗余特征抑制方法的

整体验证。为验证本文提出的先增强后抑制框架的

整体作用，设计了4组实验（表2）。所有实验均在已

添加高分辨率检测层（P2）的前提下进行：① 组1：仅

添加P2层（不含增强模块）；② 组2：在组1基础上添

加SDE；③ 组3：在组1基础上添加RFS；④ 组 4：同

时添加SDE与RFS。

结果显示，组 1相较原始YOLOv5显著提升了

图3 YOLOv5, HIC-YOLOv5与ES-YOLOv5检测效果的比较
Fig. 3 Comparison of the detection effects of YOLOv5，HIC-YOLOv5 and ES-YOLOv5

表2 基于细节特征增强与冗余特征抑制的小物体目标检测方法消融实验

Tab.2 Ablation experiments on small object detection methods based on detail feature enhancement
and redundant feature suppression %

组别

YOLOv5

组1

组2

组3

组4

SDE

—

—

√
—

√

RFS

—

—

—

√
√

P

37.59

45.18

49.33

46.80

49.81

R

31.52

37.89

42.28

41.57

43.25

mAP@0.5

27.57

35.88

39.52

40.06

40.54

mAP@[0.5:0.95]

14.43

19.94

22.90

23.15

23.56
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mAP指标，证明了引入小目标检测层的有效性。进

一步比较可见，组 2 中加入 SDE 后，mAP@0.5 由

35.88%提升至 39.52%，说明 SDE 能够显著强化特

征细节表达。组 3 在此基础上引入 RFS，mAP@

[0.5:0.95]提升 3.21 个百分点，表明其有效抑制了

冗余特征、增强了特征判别性。组 4 联合使用两

模块时性能最佳，mAP@0.5 提升 4.66 个百分点，

mAP@[0.5:0.95]提升3.62个百分点，充分验证了双

重增强策略的协同效应。

2）SDE的组件分析。为探究SDE内部结构的

有效性，对其两种核心机制——动态上采样与反卷

积进行了组合测试（表3）。实验默认包含RFS模块

作为支撑：① 组1：无动态上采样与反卷积；② 组2：

仅使用反卷积；③ 组3：仅使用动态上采样；④ 组4：

同时启用两者（完整SDE）。

实验结果表明，SDE完整配置（组4）取得最高性

能（mAP@0.5=40.54%，mAP@[0.5:0.95]=23.56%）。

单独使用任一子模块虽有提升，但幅度有限。由此

可见动态上采样在内容自适应插值方面提升空间

一致性，而反卷积在结构重建上强化细节表达。两

者协同使特征的尺度恢复与空间重构兼具适应性

与层次性，从而显著提升小目标检测精度。

3）RFS 在不同检测层下的适用性。为验证

RFS 在不同尺度特征层中的适用性，设计了在

P2~P5共 4个检测层间的组合实验（表 4）。所有组

别均包含SDE模块，以隔离RFS的影响。

结果表明，单纯在多个检测层中叠加RFS并不

能带来持续增益。组1（4层均添加）性能反而下降，

而组 7（仅在 P2 层添加）性能最优（mAP@0.5=

40.54%，mAP@[0.5:0.95]=23.56%）。这说明RFS的

作用在于强化低层细粒度特征，而过度叠加会导致

高层语义信息被反复过滤、产生特征损耗。进一步

比较组4~组7的单层插入实验结果可知，RFS在P2

层（160×160）的增益最明显。这是因为 P2 层专注

于浅层高分辨率特征，对小目标敏感度最高；RFS

的多维度特征过滤机制能有效提取有益的局部细

节并抑制背景干扰。因此，将 RFS 模块部署于 P2

层是最优方案，可在性能与复杂度之间取得最佳

平衡。

2.5 基于DOTAv1.0和DOTAv1.5数据集的泛化性

实验

为了评估提出模型在小物体目标检测任务中

的泛化性能，本文在 DOTAv1.0 和 DOTAv1.5 数据

集上进行泛化性实验。使用的评价指标与对比实

验中的不同，主要原因是 DOTA 数据集要求将模

型的检测结果上传至官方评测网站进行测试，而

该网站仅提供了特定的评价指标。为了确保结果

的可比性并符合 DOTA 数据集的评估规范，在泛

化实验中采用了这些标准指标进行性能评估，结果

如表5所示。

本文将 ES-YOLO 模型与基线 YOLOv5s 模型

和HIC-YOLOv5模型在两个数据集上复现的结果

进行了对比。ES-YOLO模型在各项指标上均优于

其他模型，展现了其在不同小物体目标检测任务中

的优秀泛化能力。在DOTAv1.0数据集上，ES-YO-

LO 模型的 AP50 得分为 61.54% ，AP75 得分为

41.40%，平均精度（mAP）达到 38.86%，展示了其在

处理不同目标大小和复杂背景时的鲁棒性。同样，

表4 RFS消融实验

Tab.4 Ablation study of RFS %

组别

组1

组2

组3

组4

组5

组6

组7

P2

√
√
√
—

—

—

√

P3

√
√
√
√
—

—

—

P4

√
√
—

—

√
—

—

P5

√
—

—

—

—

√
—

P

47.20

48.21

49.85

48.33

47.64

49.66

49.81

R

40.07

41.47

43.99

42.83

42.61

39.92

41.57

mAP@0.5

38.08

39.10

39.40

39.94

39.61

38.74

40.54

mAP@[0.5:0.95]

21.82

22.10

22.92

23.24

22.55

22.55

23.56

表3 SDE消融实验

Tab.3 Ablation study of SDE %

组别

组1

组2

组3

组4

反卷积

—

√
—

√

动态上采样

—

—

√
√

mAP@0.5

40.06

40.13

40.35

40.54

mAP@[0.5:0.95]

23.15

23.22

23.25

23.56
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在 DOTAv1.5 数据集上，ES-YOLO 模型的 mAP 达

到30.17%，有效提高了极小物体的检测性能。这些

结果验证了本文提出的改进方法的有效性，并提升

了模型在多样化和具有挑战性的环境中的表现。

3 结论

1）本文提出的ES-YOLO模型通过创新的SDE

模块和RFS模块，解决了小目标检测中的细节丢失

和冗余特征干扰问题，显著提升了检测精度。实验

结果表明，ES-YOLO 在多个标准数据集上表现优

异，尤其在复杂背景下的小目标检测中，展现出较高

的鲁棒性和计算效率。这使得该模型在交通基础设

施智能建造中具有广泛的应用潜力，能够为智能监

控、实时检测和施工进度管理提供强有力的支持。

2）未来，ES-YOLO将在无人化施工和智能建

造的融合应用中发挥重要作用，尤其是在交通基础

设施建设领域。通过集成到无人机巡检、自动化施

工机器人、施工现场实时监控系统等场景中，ES-

YOLO能够实现自动检测施工进度、实时识别结构

缺陷、确保安全隐患预警等功能。随着5G、物联网

和边缘计算的不断发展，ES-YOLO 将能够在更广

泛的无人化施工环境中部署，实现更加智能化、高

效的施工与监控，推动交通基础设施建设向智能

化、自动化方向迈进，提升建设效率与安全性。
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