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Online Time-Varying Cable Force Identification
of Stay Cables Based on DD-ACMD
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Abstract: To achieve accurate online acquisition of time- varying cable forces in cable-stayed bridges, a new
method for real-time identification of online time-varying cable forces is proposed based on the data-driven adap-
tive chirp mode decomposition (DD-ACMD) algorithm. This method adopts the sliding window technique to up-
date the vibration signal of the inclined cable, and determines its prior information and target modal components
through the power spectrum density (PSD) analysis of the vibration signal. Afterwards, the DD-ACMD algo-
rithm was used to identify the instantaneous frequency of the cable vibration, and the time-varying cable force of
the inclined cable was calculated using the axial loading beam theory. The accuracy of the method was tested by
a numerical case of inclined cable, and the results showed that the average error in identifying the time-varying
cable forces under high noise level is 0.45%, with a maximum error of 1.84%.
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Fig. 4 Time-varying cable force identification results
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forces of the stay cables

Pt — 2 7u B gl , R IRBIZE SR A e 1l
. AL, A T 3k 4b B DNZ02 $i7 R il
DNZ14 7 Z%F 3 600 s Wi £ i) B[] 31 #E 43 50 oy
115 sF1120's, T, 2390020 1.60 s 1 1.67 s, HIHA
INFREME O (T s) , FRIAARSCOT LR AE —
FERIE N SEILAE LR B AR 2R 1R

3 #ig

AR EE4A DD-ACMD Bk 15 3h 3 H AR Ko



ol % A5 RHTRIET DD-ACMD BFEL AR J3H 5] 57

RSN R AR T — PRI R I AR 2R S5
Jiiko

1) B4R 7 i LA B I A of 2 e s o
P, FERHI AW, 24 SNR=5 dB I, A S ik
R IR BI - BN R 22 R 0.45% , e KA X R 22
11.84%,

2) TE KBS RH AT A R LB, B4y 2k
i A 7~ T AL R B AR R AR A I, e B AR SC
JIF 4 7 92 38 1 T AE AR SEHE LR AR 2R
P

3) FrR 7 e A R E SR SRS R,
T BB AT, TR RCR A SEBR TR il
FHRCR B4

Sk

[1] xR, SR, #7, 55 BTk 2 mRD R Bk

AL AR I P[], PR 8 5 b, 2023, 42(12):
212-219.
LIU X, ZHUO W D, YANG N, et al. Identification of
time-varying cable force based on an improved multisyn-
chrosqueezing transform[J]. Journal of Vibration and
Shock, 2023, 42(12): 212-219.

[2] BAOY Q, GUOY B, LI H. A machine learning-based ap-
proach for adaptive sparse time- frequency analysis used
in structural health monitoring[J]. Structural Health Moni-
toring, 2020, 19(6): 1963-1975.

[3] XUSCR, RSHRAM, MOAC %, 5. A8 SRS 43 AN Ie] 20 4% 1

ZIN I 78 A 1) IR A 55 e T IR (). 4R 2l 5 i,
2018, 37(20): 24-31.
LIUJL, ZHENG J Y, LIN Y Q, et al. Instantaneous fre-
quency identification of time-varying structures using var-
iational mode decomposition and synchrosqueezing wave-
let transform[J]. Journal of Vibration and Shock, 2018, 37
(20): 24-31.

(4] X5 R, BT, KRR, 5. FE TR0 B ORI 43t 22 %5
B AE A BRI AR D). #2380 i 5120, 2021, 41
(3): 519-526, 622.
LIU J L, WANG X Y, ZHENG J Y, et al. Instantaneous
frequency identification based on synchroextraction and
maximum modulus of time-frequency coefficients[J]. Jou-
rnal of Vibration, Measurement & Diagnosis, 2021, 41
(3): 519-526, 622.

[5] HOU S T, DONG B, FAN J H, et al. Variational mode de-

composition based time-varying force identification of

stay cables[J]. Applied Sciences, 2021, 11(3): 1254.

[6] ZHANG X, PENG J Y, CAO M S, et al. Identification of
instantaneous tension of bridge cables from dynamic re-
sponses: strict algorithm and applications[J]. Mechanical
Systems and Signal Processing, 2020, 142: 106729.

[7T YU X W, DAN D H. Block-wise recursive APES aided
with frequency-squeezing postprocessing and the applica-
tion in online analysis of vibration monitoring signals[J].
Mechanical Systems and Signal Processing, 2022, 162:
108063.

[8] YU X W, DAN D H. Real-time cable force identification
based on block recursive Capon spectral estimation meth-
od[J]. Measurement, 2023, 213: 112664.

[91 DAN D H, HAO X M. An automatic real-time cable modal
frequency identification and tracking algorithm by co-
mbining recursive band-pass filter and recursive Hilbert
transform[C]//2021 4th International Symposium on Traf-
fic Transportation and Civil Architecture (ISTTCA), Su-
zhou, China. New York: IEEE, 2021: 340-343.

[10] LIU X, YANG J, ZHUO W D, et al. Real-time identifica-
tion of time-varying cable force for cable-stayed bridges
based on vibration monitoring[J]. Measurement, 2024,
231: 114590.

[11] WANG H B, CHEN S Q, ZHAI W M. Data-driven adap-
tive chirp mode decomposition with application to ma-
chine fault diagnosis under non- stationary conditions[J].
Mechanical Systems and Signal Processing, 2023, 188:
109997.

[12] CHEN S Q, DONG X J, PENG Z K, et al. Nonlinear
chirp mode decomposition: a variational method[J]. [IEEE
Transactions on Signal Processing, 2017, 65(22): 6024-
6037.

[13] DAVENPORT A G. The spectrum of horizontal gustiness
near the ground in high winds[J]. Quarterly Journal of the
Royal Meteorological Society, 1961, 87(372): 194-211.

BIEEE HAR972—), 5SmSR BSR4
KM ANZE R HE W . E-mail : 634455345@qq.com.

(DTGt X %)



