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Anomalous Driving Behavior Recognition of Vehicles Based on
CNN-BiGRU-MHA in Ice and Snow Environments

Pei Yulong, Fan Yichen

(School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150000, China)

Abstract: To enhance the monitoring and detection of abnormal driving behavior of vehicles in snow and ice con-
ditions,this paper proposes a data-driven method for identifying abnormal driving behaviors by integrating multi-
channel CNN-BiGRU with MHA. Abnormal driving data are obtained by LAIF model, combined with driving
characteristics and data features under ice and snow environments, abnormal driving behavior indicators are con-
structed to characterize 6 kinds of abnormal driving behavior, namely rapid acceleration, rapid deceleration, rapid
turning, rapid lane change, serpentine driving and skidding, and the ADASYN is introduced. The model proposed
in this paper is compared and analysed with other models.The CNN-BiGRU-MHA detection model has an overall
accuracy of 96.34%, which is better than other detection models indicating that the model can effectively detect
the abnormal driving behavior of cars in ice and snow environments, and provides a theoretical basis for early
warning of abnormal driving behavior.
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Fig.5 Analysis of abnormal driving behavior characteristics
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