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Numerical Simulation of Contra-Rotating Propeller Boss Cap
Fins Using Overset Grid Method

Zhu Wencai, Li Zhirong, Hu Guoliang

(School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China)

Abstract: By comparing the open-water characteristics and cavitation characteristics between the contra-rotating
propeller boss cap fins (CRPBCF) propeller and the benchmark propeller, this paper investigates the influence of
CRPBCEF on the hydrodynamic performance of propellers. The CRPBCF model was constructed through geomet-
ric transformation of VP1304 propeller blades. Numerical simulations were conducted using the overset grid
technique and large eddy simulation (LES) in STAR-CCM+. The computational results were validated against
experimental data, demonstrating good accuracy and reliability. The results demonstrate that the CRPBCF propel-
ler exhibits superior hydrodynamic performance compared to the benchmark propeller. At an auxiliary propeller
speed of n,=37.5 /s, it achieves maximum efficiency gains of 4.18% and thrust improvements up to 7.28%. In
terms of cavitation characteristics, a distinct vapor volume fraction isosurface of 20% is clearly observed in the
wake flow of the benchmark propeller, whereas no such phenomenon was observed for the CRPBCF propeller.
This demonstrates that CRPBCF can effectively suppress the generation of hub vortex cavitation (HVC). In sum-
mary, the results demonstrate that the CRPBCF propeller not only enhances propulsive efficiency but also deliv-

ers greater thrust under low advance coefficient conditions while effectively suppressing the occurrence of HVC.
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Tab.1 Geometric Parameters of VP1304 Propeller
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Fig. 10 Comparison of hub vortex structures (@, =0.2, o,=2.024)
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