K-means聚类算法研究综述
DOI:
作者:
作者单位:

华东交通大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Survey of K-means Clustering Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    聚类分析是数据挖掘的重要技术,而在5G时代,海量的数据维度高、数据集大,利用K-means算法易受离群点的影响,且K值、初始聚类中心的选取影响聚类结果的稳定性和准确率,甚至导致聚类陷入局部最优,因此对K-means算法的改进受到众多研究者的关注。本文主要对K-means聚类的研究现状进行归纳总结,首先介绍K-means算法的思想原理;其次,针对初始聚类中心点的选取、K值确定、离群点对现有改进算法进行基于密度和距离的分类总结,并对各个改进算法的优势和缺陷进行分析;最后对K-means算法未来可能的研究方向和趋势进行展望。

    Abstract:

    Cluster analysis is an important technique for data mining. In the 5G era, massive data have high dimensions and large data sets. The K-means algorithm is susceptible to outliers, and the k value and the selection of initial clustering centers affect the stability and accuracy of the clustering result. It even causes the clustering to fall into the local optimum, so the improvement of the K-means algorithm has attracted the attention of many researchers. This article mainly summarizes the current research status of K-means clustering. Firstly, it introduces the principle of K-means algorithm; Secondly, according to the selection of the initial clustering center point, the determination of the K value, and the outliers, the existing improved algorithms are classified and summarized based on density and distance, and the advantages and disadvantages of each improved algorithm are analyzed; finally, the K-means algorithm is analyzed. Prospects for possible future research directions and trends.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-15
  • 最后修改日期:2021-10-22
  • 录用日期:2021-10-25
  • 在线发布日期: 2022-10-11
  • 出版日期: