考虑异质性及动态交通信息的出行行为研究
DOI:
作者:
作者单位:

华东交通大学交通运输与物流学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(52062015,51805169,52162049);江西省教育厅科学技术研究项目(GJJ200670);江西省研究生科研创新项目(YC2020-S308)


A Study on Travel Behavior based on Traveler Heterogeneity and Dynamic Traffic Information
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China(52062015,51805169,52162049);Science and Technology Research Project of Department of Education, Jiangxi Province(GJJ200670);Graduate Student Innovation Project, Jiangxi Province(YC2020-S308)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了定量分析交通事故引起的高速公路动态拥堵交通信息和出行者异质性对出行选择行为的影响,依据在日本西部地区对2500名高速公路出行者进行的大规模SP/RP调查数据,采用潜在类别分析方法得到出行者对高速公路动态交通信息的偏好特征;将得到的分组结果作为解释变量纳入多水平模型中。结果表明:基于实际调查数据,出行者可划分为3类群体,即动态交通信息高依赖组、动态交通信息低依赖组和动态交通信息无依赖组,占比分别为38.8%、36.1%、25.1%;考虑数据分层结构的出行选择模型比一般离散选择模型预测更为精准;不同交通信息异质性的出行者在动态交通信息下的出行行为有明显差异。

    Abstract:

    In order to quantitatively analyze the influence of highway dynamic congestion traffic information caused by traffic accidents and traveler heterogeneity on travel choice behavior, a large-scale SP/RP survey data that covering 2500 highway users in west Japan is used for this study. Latent Class Analysis (LCA) is adopted for extracting different preference features on traffic information, followed by a multilevel model which sets the results of LCA as explanatory variable. The research results show that: according to investigation information,travelers can be divided into three groups:high-dependence group, low-dependence group and non-dependence group accounting for 38.8%, 36.1% and 25.1% respectively; the model considering data hierarchical structure is more accurate than the general discrete choice model; and travelers with different heterogeneity of traffic information have obvious differences in travel behavior under dynamic traffic information.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-07
  • 最后修改日期:2022-02-23
  • 录用日期:2022-02-25
  • 在线发布日期: 2022-10-11
  • 出版日期: