基于融合神经网络的发动机排气温度裕度预测
DOI:
作者:
作者单位:

长安大学 电子与控制工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家市场监督管理总局科技计划,国家自然科学基金


Exhaust Gas Temperature MarginSPredictionSof Aeroengine Based on Fusion Neural Network
Author:
Affiliation:

Fund Project:

the Science and Technology Program Project of Chinese State Administration for Market Regulation(SAMR),National Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    民用航空发动机排气温度裕度(EGTM)的变化趋势反映了其性能衰退情况,为使用EGTM的变化趋势来映射其性能衰退情况,提出了一种经验模态分解(Empirical Mode Decomposition, EMD)算法与卷积长短期记忆网络(CNN-LSTM)相融合的EGTM神经网络预测模型。采用EMD将原始EGTM序列分解为多个固有模态分量和残差分量,并将所有分量作为模型输入,利用卷积长短期记忆网络捕获各分量非线性相关性并提取长时依赖关系,构建深度学习模型框架。为验证所提方法的有效性,采用某航空公司10年的EGTM的实际测试数据进行实验分析,并设计了5种神经网络作为竞争模型进行对比研究。实验结果表明:相比于竞争模型,所提出的EMD-CNN-LSTM融合神经网络模型可使平均绝对误差和均方根误差降低37.82%和33.01%,拟合优度提高1.02%,此外,当EGTM处于敏感区域时,所提出模型的EGTM单点预测精度显著高于其他竞争模型。因此,所提出的融合神经网络模型在民航发动机EGTM预测中具有较好的准确性和稳定性。

    Abstract:

    The change trend of exhaust gas temperature margin (EGTM) of civil aviation engine reflects its performance degradation. In order to employ the change trend of EGTM to map the performance degradation of the engine, an deep integrated neural network prediction method based on empirical mode decomposition (EMD) algorithm and convolution short-term memory network (CNN-LSTM) is proposed in this study. EMD is used to decompose the original EGTM sequence into multiple natural mode components and residual components, and all the resulting components are used as model input. The convolution long-term and short-term memory network is used to capture the nonlinear correlation of each component and extract the long-term dependence to construct the framework of deep learning model. In order to verify the effectiveness of the proposed method, the actual test data of EGTM of an airline for 10 years are used for experimental analysis, and five kinds of neural networks are designed as competitive models for comparative study. The experimental results show that the proposed EMD-CNN-LSTM fusion neural network model can reduce the mean absolute error and the root mean square error by 37.82% and 33.01%, and increase the goodness for fit by 1.02%, compared with competitive models. Furthermore, when EGTM is in the sensitive area, EGTM single-point prediction accuracy of the proposed model is significantly higher than that of other competitive models. Therefore, the proposed fusion neural network model has good accuracy and stability in EGTM prediction of civil aviation engine.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-19
  • 最后修改日期:2022-05-07
  • 录用日期:2022-05-20
  • 在线发布日期: 2022-11-04
  • 出版日期: