密度峰值聚类算法研究综述
DOI:
作者:
作者单位:

华东交通大学理学院

作者简介:

通讯作者:

中图分类号:

基金项目:

江西省自然科学基金(20192ACBL20010)


Survey of Density Peak Clustering Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    密度峰值聚类(DPC)是一种新提出的基于密度和距离的聚类算法,由于其原理简单,无需迭代和能处理形状数据集等优点,正在数据挖掘领域得到广泛应用。但DPC算法也有着一定的缺陷,如:对截断距离参数敏感,初始聚类中心的选择非自动化,后续标签分配存在链式问题,时间复杂度较高等。本文对DPC算法的研究现状进行了总结与整理,首先介绍了DPC的算法原理和流程;其次,针对DPC算法的不足对DPC算法的优化进行概括和分析,指出了优化算法的核心技术以及优缺点;最后,对DPC算法未来可能面对的挑战和发展趋势进行展望。

    Abstract:

    Density peak clustering (DPC) is a novel clustering algorithm based on density and distance. It is widely used in the field of data mining because of its simple principle, no iteration and the ability to process shape datasets. However, DPC algorithm also has some defects, such as the cutoff distance parameter is sensitive, the selection of initial clustering center is not automatic, and there is a chain problem in subsequent allocation, with high time complexity. This paper summarizes and arranges the research status of DPC algorithm. Firstly, it introduces the principle and process of DPC algorithm; Secondly, in view of the deficiencies of DPC algorithm, the optimization of DPC algorithm is summarized and analyzed, and points out the core technology, advantages and disadvantages of the optimization algorithm; Finally, the possible challenges and development trend of DPC algorithm in the future are prospected.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-02
  • 最后修改日期:2022-05-11
  • 录用日期:2022-05-13
  • 在线发布日期: 2023-06-21
  • 出版日期: