余弦型路基沉降对纵连板式无砟轨道变形与层间接触性状的影响
作者单位:

1.华东交通大学;2.中南大学

基金项目:

国家自然科学基金项目(52078487),轨道交通基础设施性能监测与保障国家重点实验室项目(HJGZ20212003, HJGZ20212009)


Influence of cosine subgrade settlement on deformation and interlayer interface state of longitudinally connected ballastless track
Fund Project:

National Natural Science Foundation of China(52078487), Project of State Key Laboratory of Performance Monitoring and Guarantee of Rail Transit Infrastructure(HJGZ20212003, HJGZ20212009)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    基于前期开发的高速铁路基础变形诱发轨道结构变形与层间接触性状演变的通用表征模型,植入余弦型路基沉降描述函数,引入用以刻画轨道-路基间接触非线性的Heaviside函数,推导余弦型路基沉降下纵连板式无砟轨道各层结构的变形方程,利用渐进性接近法求解含接触非线性的超静定方程,进而分析余弦型路基沉降对轨道各层结构变形和层间接触性状演变的影响规律。结果表明:在余弦型路基沉降区域内,轨道随路基沉降发生“跟随性”变形,当路基沉降波长一定时,轨道下沉和上拱均随路基沉降幅值的增加而增大,当沉降幅值一定时,轨道下沉随路基沉降波长的增加而增大,但上拱却减小;轨道-路基间的脱空区域及轨道的受力曲线呈左右对称,轨道整体刚度影响脱空长度和高度;当路基沉降波长为10m时,随路基沉降幅值的增加,脱空高度和长度增长的同时,还会整体向远离沉降区方向“平移”;当路基沉降幅值为10mm时,需要重点关注沉降波长小于20m的不均匀沉降。

    Abstract:

    Based on the pre-development general characterization model of track structure deformation and the evolution of interlayer interface state induced by the deformation of high-speed railway foundation, the description function of cosine subgrade settlement was implanted, and the Heaviside function was introduced to describe the contact nonlinearity between track and subgrade, the deformation equation of each layer of longitudinally connected ballastless track under cosine subgrade settlement was derived, the progressive approximation method was used to solve hyperstatic equation with contact nonlinearity, and the influence law of cosine subgrade settlement on the track structure deformation of each layer and the evolution of interlayer interface state was analyzed. Results indicate that: in the cosine subgrade settlement area, the track deforms accordingly with the subgrade settlement, when the subgrade settlement wavelength is constant, the track settlement and heaving increase with the increase of the subgrade settlement amplitude, when the settlement amplitude is constant, the track settlement increases with the increase of the subgrade settlement wavelength, but the track heaving decreases. The void area between track-subgrade and the track force curve are symmetrical, and the track overall stiffness affects the void length and height. When the subgrade settlement wavelength is 10m, with the increase of the subgrade settlement amplitude, the void height and length increase, it will also shift away from the settlement area as a whole. When the subgrade settlement amplitude is 10mm, it is necessary to focus on the uneven settlement with settlement wavelength less than 20m.

    参考文献
    [1] 秦晓光, 杨龙才. 灰色预测在高铁路基沉降预测中的应用[J]. 华东交通大学学报, 2011,28(05):88-92.IN X G, YANG L C. Application of Grey Prediction in Settlement Prediction of High-speed Railway[J]. Journal of East China Jiaotong University, 2011,28(05):88-92.
    [2] 陈兆玮, 孙宇, 翟婉明. 高速铁路桥墩沉降与钢轨变形的映射关系(Ⅰ):单元板式无砟轨道系统[J]. 中国科学:技术科学, 2014,44(07):770-777.CHEN Z W, Sun Y, ZHAI W M. Mapping relationship between pier settlement and rail deformation of high-speed railways-part (I): The unit slab track system[J]. Scientia Sinica: Technologica. 2014, 44(07): 770-777
    [3] 陈兆玮, 孙宇, 翟婉明. 高速铁路桥墩沉降与钢轨变形的映射关系(Ⅱ):纵连板式无砟轨道系统[J]. 中国科学:技术科学, 2014(07):778-785.CHEN Z W, SUN Y, ZHAI W M. Mapping relationship between pier settlement and rail deformation of high-speed railways-part (II): The longitudinal connected ballastless track system [J]. Scientia Sinica; Technologica. 2014, 44(07): 778-785
    [4] CHEN Z W. Relationship between track stiffness and dynamic performance of vehicle–track–bridge system[J]. Vehicle System Dynamics, 2021,59(12):1825-1843.
    [5] GOU H Y, RAN Z W, YANG L C, et al. Mapping vertical bridge deformations to track geometry for high-speed railway[J]. Steel and Composite Structures, 2019,32(4):467-478.
    [6] GOU H Y, YANG L C, LENG D, et al. Effect of bridge lateral deformation on track geometry of high-speed railway[J]. Steel and Composite Structures, 2018,29(2):219-229.
    [7] FENG Y L, JIANG L Z, ZHOU W B, et al. An analytical solution to the mapping relationship between bridge structures vertical deformation and rail deformation of high-speed railway[J]. Steel and Composite Structures, 2019,33(2):209-224.
    [8] 蒋丽忠, 冯玉林, 周旺保, 等. 高铁连续梁桥横向变形与轨面几何形态变化的映射关系研究[J]. 建筑结构学报, 2021,42(04):215-222.JIANG L Z, FENG Y L, ZHOU W B, et al. Study on mapping relationship between continuous girder bridge transverse deformation and rail geometric changes of high-speed railway[J]. Journal of Building Structures. 2021,42(04): 215-222
    [9] 冯玉林, 蒋丽忠, 陈梦成, 等. 连续梁桥边墩不均匀沉降下轨道层间变形协调关系及动力学应用[J]. 工程力学, 2021,38(04):179-190.
    [10] FENG Y L, JIANG L Z, CHEN M C, et, al. Deformation Compatibility Relationship of Track Interlayer With Uneven Settlement of Side Pier of Continuous Girder Bridge and Its Dynamic Application[J]. Engineering Mechanics, 2021,38(04):179-190.
    [11] LAI Z P, JIANG L Z, LIU X, et al. Analytical investigation on the geometry of longitudinal continuous track in high-speed rail corresponding to lateral bridge deformation[J]. Construction and Building Materials, 2021,268:121064.
    [12] JIANG L Z, LIU L L, ZHOU W B, et al. Mapped relationships between pier settlement and rail deformation of bridges with CRTS III SBT[J]. STEEL AND COMPOSITE STRUCTURES, 2020,36(4):481-492.
    [13] JIANG L Z, ZHENG L, FENG Y L, et al. Mapping the relationship between the structural deformation of a simply supported beam bridge and rail deformation in high-speed railways[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020,234(10):1081-1092.
    [14] 郭宇, 高建敏, 孙宇, 等. 板式无砟轨道轨面变形与路基沉降的映射关系[J]. 西南交通大学学报, 2017,52(06):1139-1147.GUO Y, GAO J M, SUN Y, et al. Mapping relationship between rail deflection of slab track and subgrade settlement [J]. Journal of Southwest Jiaotong University. 2017,52(06): 1139-1147
    [15] 郭宇, 高建敏, 孙宇, 等. 路基沉降与双块式无砟轨道轨面几何变形的映射关系[J]. 铁道学报, 2016,38(09):92-100.GUO Y, GAO J M, SUN Y, et al. Mapping relationship between subgrade settlement and rail deflection of the double-block ballastless track [J]. Journal of the China Railway Society. 2016, 38(09): 92-100
    [16] 赵国堂. 严寒地区高速铁路无砟轨道路基冻胀管理标准的研究[J]. 铁道学报, 2016,38(03):1-8.HAO G T. Study on Management Standard of Frost Heaving of Ballastless Track Subgrade on High-speed Railway in Severe Cold Regions[J]. Journal of the China Railway Society, 2016,38(03):1-8.
    [17] 赵国堂, 刘秀波, 高亮, 等. 哈大高速铁路路基冻胀区轨道不平顺特征分析[J]. 铁道学报, 2016,38(07):105-109.HAO G T, LIU X B, GAO L, et, al. Characteristic Analysis of Track Irregularity in Subgrade Frost Heave Area of Harbin-Dalian High-speed Railway[J]. Journal of the China Railway Society, 2016,38(07):105-109.
    [18] 冯玉林, 侯宇, 蒋丽忠, 等. 基础变形诱发无砟轨道-桥梁系统关键构件变形累积与刚度突变的轨面解析表征[J]. 土木工程学报, 2022:1-14.ENG Y L, HOU Y, JIANG L Z, et, al. Rail surface analytical representation of deformation accumulation and stiffness mutation of key components in ballastless track-bridge system induced by foundation deformation[J]. China Civil Engineering Journal, 2022:1-14.
    [19] 郭宇. 高速铁路路基不均匀沉降及其演化对车辆-轨道耦合系统力学性能的影响[D]. 西南交通大学, 2018.GUO Y. Effects of Differential Subgrade Settlement and Its Evolution in High-speed Railways on Mechanical Performance of Vehicle-track Coupled System[D]. Southwest Jiaotong University, 2018
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-21
  • 最后修改日期:2022-08-19
  • 录用日期:2022-08-21
  • 在线发布日期: 2023-06-21
关闭