融合迭代和问题维度的速度约束粒子群算法
DOI:
作者:
作者单位:

福建工程学院计算机科学与数学学院

作者简介:

通讯作者:

中图分类号:

基金项目:

福建省心理健康人机交互技术研究中心(2020L3024);福建工程学院发展基金(GY-Z20046);福州市科技创新平台项目(No.2021-P-052);


Particle swarm optimization with velocity limit combining iteration and problem dimension
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    粒子群算法广泛应用于工程、科学与管理等领域实际问题中的复杂优化问题求解,设计新的策略以应对算法的性能和效率瓶颈是该领域的研究热点。传统粒子群算法速度约束策略比较单一,容易导致算法收敛速度慢,性能低等问题,提出一种融合算法迭代和问题维度的速度约束策略,通过分析一种算法种群进化状态评估值与迭代次数及问题维度的关系,设计一个计算进化状态评估值的公式,使其受算法迭代次数和问题维度影响,最后根据进化状态评估值计算算法的速度约束范围,得到一种融合迭代和问题维度的速度约束粒子群算法。最终,新的速度约束策略使粒子群算法的种群状态受到迭代次数和问题维度的影响,具有自适应性,并对不同维度问题求解具有扩展性。结果表明,本文提出的速度约束策略提高了粒子群算法的收敛速度和求解精度。仿真实验证明了算法的有效性。

    Abstract:

    Particle swarm optimization(PSO) is widely used to solve complex optimization problems in practical problems in the fields of engineering, science and management. Designing new strategies to deal with the performance and efficiency bottlenecks of the algorithm is a research hotspot in this field. In order to solve the problem that the original velocity limit strategy of PSO is relatively simple, which may easily lead to slow convergence speed and low performance of the algorithm, this paper proposes a new velocity limit strategy combining iteration and problem dimension. By analyzing the relationship of the evolutionary state evaluation to iterations and the dimension of problem for particle swarm optimization, a formula is designed to calculate the evolutionary state evaluation(ESE) which is influenced by the iterations and problem dimension, and calculates the velocity limit on the basis of the ESE, so a Particle swarm optimization with velocity limit combining iteration and problem dimension is obtained. Finally, the algorithm is affected by iteration and problem dimensions, adaptive and scalable for solving problems in different dimensions. The results show that the strategy improves the convergence speed and accuracy. Experimental results show the effectiveness of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-24
  • 最后修改日期:2022-08-23
  • 录用日期:2022-08-27
  • 在线发布日期: 2023-06-21
  • 出版日期: