考虑专家先验信息的轨道不平顺预测方法
DOI:
作者:
作者单位:

上海工程技术大学 城市轨道交通学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Track Irregularity Prediction Method Considering Expert Prior Information
Author:
Affiliation:

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了研究在缺乏历史数据时如何准确预测轨道不平顺的发展趋势。提出了一种可以考虑专家先验信息的轨道不平顺预测方法。通过问卷调查法获取专家先验信息并构建具有先验信息的贝叶斯线性回归模型,然后使用马尔科夫链蒙特卡洛方法对模型参数进行求解,最后对轨道不平顺的幅值进行预测和误差分析并对比了不同模型在缺乏历史数据时的预测效果。结果表明:该方法可以准确预测短期内有砟轨道不平顺的发展趋势,相关系数均在0.9以上。在缺乏历史数据的情况下,贝叶斯线性回归模型也能保持较高预测精度R2为0.88,比传统线性回归模型高17%。得到结论:所提方法可有效地提高高铁线路运营初期运维计划制定的精度,有助于实现高铁线路的预防性维修。

    Abstract:

    In order to study how to accurately predict the development trend of track irregularity in the absence of historical data. A track irregularity prediction method that can consider the prior information of experts is proposed. The questionnaire survey method is used to obtain expert experience information and build a Bayesian linear regression model with prior information. Then the Markov chain Monte Carlo method is used to solve the model parameters. Finally, the amplitude of track irregularity is predicted and error analysis is conducted, and the prediction effects of different models in the absence of historical data are compared. The results show that the method can accurately predict the development trend of the track irregularity in the short term, and the correlation coefficients are all above 0.9. In the absence of historical data, the Bayesian linear regression model can also maintain a high prediction accuracy and the R2 is 0.88, which is 17% higher than the traditional linear regression model. It is concluded that this method can effectively improve the accuracy of the operation and maintenance plan formulation at the initial stage of line operation, and is helpful to the realization of preventive maintenance of high-speed railway lines.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-25
  • 最后修改日期:2022-12-07
  • 录用日期:2022-12-08
  • 在线发布日期: 2023-06-21
  • 出版日期: