基于深度学习的绝缘子故障检测仿真研究
DOI:
作者:
作者单位:

大连交通大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Simulation study on insulator fault detection based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机巡检中采集到的绝缘子图片受干扰严重、检测精度低的问题,在YOLOv5s算法的基础上进行优化,基于改进后的YOLOv5s算法进行了绝缘子故障检测的仿真研究。通过在颈部网络添加CBAM注意力模块、运用k-means聚类重新计算先验框大小、采用MetaAconC作为激活函数三种措施改进了原算法,并基于python进行了实验结果分析。实验结果表明本方案优势在于,算法平均精度均值mAP达到了96.7%,对比原YOLOv5s模型,平均精度均值mAP提升3.3%;且本方案算法训练出的权重文件大小仅有15.1M,仅比原YOLOv5s大了0.1M,仍然保持了轻量化的特点,在智能巡检工作的部署上有良好前景。

    Abstract:

    Aiming at the problem of serious interference and low detection accuracy of insulator pictures collected in UAV patrol inspection, the optimization is carried out based on YOLOv5s algorithm, and the simulation research of insulator fault detection is carried out based on the improved YOLOv5s algorithm. The original algorithm is improved by adding CBAM attention module to the neck network, using k-means clustering to recalculate the size of a priori frame, and using MetaAconC as the activation function. The experimental results are analyzed based on python. The experimental results show that the advantage of this scheme is that the average accuracy of the algorithm mAP reaches 96.7%, which is 3.3% higher than the original YOLOv5s model; In addition, the weight file size of the algorithm training in this scheme is only 15.1M, which is only 0.1M larger than the original YOLOv5s, and still maintains the lightweight feature, which has a good prospect in the deployment of intelligent patrol work.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-05
  • 最后修改日期:2023-02-28
  • 录用日期:2023-03-01
  • 在线发布日期: 2023-06-21
  • 出版日期: