不确定条件下公铁水多式联运多目标路径优化研究
DOI:
作者:
作者单位:

华东交通大学交通运输工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学重点联合基金(U2034211);国家重点研发计划(2020YFB1713700);流程工业综合自动化国家重点实验室联合基金(2022-KF-21-03)


Research on Optimization of Highway-Railway-Waterway Multi-objective Path of Multimodal Transport Under Uncertain Conditions
Author:
Affiliation:

Fund Project:

The National Research Program of China ,The National Natural Science Foundation of China (Key Program),Opening Foundation of State Key Laboratory of Integrated Automation in Process Industry

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多式联运运输的时效性和成本在现代物流的发展中是不可忽视的因素。本文针对公铁水多式联运的运输目标,主要研究了当运输时间、中转时间双重不确定因素服从随机分布时的绿色多式联运路径优化问题。构建以运输时间、运输线路距离、运输成本为目标函数,碳排放量为约束,建立运输时间、中转时间双重不确定条件下绿色多式联运路径多目标优化模型。并据此采用模糊自适应遗传算法(FAGA)和快速非支配排序遗传算法(NSGA-II)设计多式联运路径优化策略;最后采用从南昌到柏林的路径数据仿真验证所提方法的有效性并对结果进行对比分析。本文研究发现基于NSGA-II算法的多目标优化结果较优,可以引导多式联运经营人调整运输方案,减少二氧化碳的排放量,为物流企业开展多式联运运输提供了可供参考的依据。

    Abstract:

    In the development of modern logistics, the timeliness and cost of multimodal transport are factors that cannot be ignored. Aiming at the transportation goal of highway-railway-waterway multimodal transport, this paper mainly studies the path optimization problem of green multimodal transport when the dual uncertainties of transportation time and transit time obey random distribution. The multi-objective optimization model of green multimodal transport path under the dual uncertainties of transportation time and transit time is established with transportation time, transportation route distance and transportation cost as objective functions and carbon emissions as constraints. Accordingly, Fuzzy adaptive genetic algorithm and Fast non-dominated sorting genetic algorithm (NSGA-II) are used to design the multimodal transport path optimization strategy. Finally, the path data from Nanchang to Berlin is used to verify the effectiveness of the proposed method and the results are compared and analyzed. This paper finds that the multi-objective optimization results based on NSGA-II algorithm are better, which can guide the multimodal operators to adjust the transportation plans and reduce the emission of carbon dioxide, providing a reference for logistics enterprises to carry out multimodal transportation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-27
  • 最后修改日期:2023-02-27
  • 录用日期:2023-03-03
  • 在线发布日期: 2023-06-21
  • 出版日期: