基于独立分类网络的开集识别研究
DOI:
作者:
作者单位:

华东交通大学电气与自动化工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(1763012)


Research on open set recognition based on independent Classification Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前,大多数的研究在解决图像分类模型的开集识别问题时,依赖于大量的标注样本来刻画已知类别的特征分布,这可能会导致两个问题:标注样本不足时,模型的训练容易陷入局部极值;根据已知类别特征差异构建的决策边界仅反映已知类间的特征分布,缺乏开集泛化性。本文提出了一种分离式的独立分类网络结构,每个类别都包含独立的线性特征层,特征层中设计的神经元节点能够在有限的数据样本下更准确地捕获类别特征。同时,在模型训练时,文中引入了一类无需标注的负样本,使得模型在构建决策边界时不仅依赖于已知类别的特征差异,在不增加额外标注样本的情况下,增加模型决策边界的开集泛化性。实验结果表明,在FDS和Imagenet-Crop数据集上采用独立分类网络并融合开集自适应训练的算法比现有开集识别算法具有更优的开集识别性能。

    Abstract:

    At present, most studies rely on a large number of annotated samples to describe the feature distribution of known categories when solving the open set recognition problem of image classification models, which may lead to two problems: when the annotated samples are insufficient, the model training is easy to fall into the local extreme value; The decision boundary constructed according to the feature difference of known classes only reflects the feature distribution among known classes and lacks the generalization of open sets. In this paper, we propose a separate independent classification network structure, in which each category contains an independent linear feature layer. The neural nodes designed in the feature layer can capture the category features more accurately under limited data samples. At the same time, a class of negative samples without labeling is introduced in the model training, so that the model not only relies on the feature difference of the known categories when constructing the decision boundary, but also increases the open set generalization of the model decision boundary without adding additional labeled samples. The experimental results show that the open set recognition algorithm based on independent classification network and adaptive open set training on FDS and Imagenet-Crop data sets has better open set recognition performance than the existing open set recognition algorithm.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-06
  • 最后修改日期:2023-04-08
  • 录用日期:2023-04-14
  • 在线发布日期: 2023-06-21
  • 出版日期: