UDN中面向安全卸载与资源分配的FIHAS算法研究
DOI:
作者:
作者单位:

,

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(62261020, 61861017, 62062034, 62171119, 61861018, 61961020, 61862025, 62001201, 61963017);江西省自然科学基金资助项目(20224BAB202001, 20212BAB202004, 20212BAB212001)


Research on FIHAS Algorithm for Secure Offloading and Resource Allocation in UDN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着各类移动应用与服务的迅猛增加,移动终端电池容量同能量消耗之间的矛盾日益突出。此外,超密集网络 (Ultra-Dense Network, UDN)中小基站(Small Base Station, SBS) 的超密集部署使得网络干扰变得更为复杂,且部署在网络边缘的服务器也容易遭受恶意攻击。鉴于此,针对多任务UDN场景,通过联合优化用户设备(User Equipment, UE)关联、密码服务分派、UE功率控制、UE 与SBS 计算资源分配以最小化加权的标准化总能耗与标准化总安全成本之和。首先,在UDN场景下,构建MEC和本地计算的系统模型;然后,提出了一个最小化加权的标准化总能耗与标准化总安全成本之和的混合整数、非线性优化问题,并针对该问题设计了一种联合优化策略。该策略先利用改进的自适应保护多样性的遗传算法(Adaptive Diversity-Guided Genetic Algorithm, ADGGA)进行粗粒度搜索,再利用自适应粒子群优化(Adaptive Particle Swarm Optimization, APSO)算法进行细粒度搜索,并由此构建了进一步改进的分层自适应搜索(Further Improved Hierarchical Adaptive Search, FIHAS)算法。仿真结果表明,所提出的算法总体上能够获得较其它现有算法更优的系统性能。

    Abstract:

    With the rapid growth of various mobile applications and services, the contradiction between the battery capacity and the energy consumption at mobile terminals is becoming increasingly prominent. In addition, the ultra-dense deployment of small base stations (SBSs) in ultra-dense network (UDN) makes network interference more complicated, and servers deployed at the edge of the network are also vulnerable to malicious attacks. In view of this, by jointly optimizing the user equipment (UE) association, cryptographic service assignment, UE power control, and computational resource allocation of UEs and SBSs, the sum of weighted standardized total energy consumption and standardized total security cost is minimized for the multi-task UDN. Specifically, mobile edge computing (MEC) and local computing models are first built for multi-task UDN. Then, a mixed-integer and non-linear optimization problem with minimizing the sum of weighted normalized total energy consumption and normalized total safety cost is formulated, and a joint optimization strategy is designed for it. In such a strategy, an adaptive diversity-guided genetic algorithm (ADGGA) is first executed for a coarse-grained search, and then adaptive particle swarm optimization (APSO) algorithm is run for a fine-grained search. The two-step search procedure is regarded as a further improved hierarchical adaptive search (FIHAS) algorithm. The simulation results show that the proposed algorithm may achieve better system performance than other existing algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-29
  • 最后修改日期:2023-06-11
  • 录用日期:2023-06-12
  • 在线发布日期: 2023-06-21
  • 出版日期: