基于注意力机制的YOLOv5路面裂缝检测与识别
DOI:
作者:
作者单位:

1.广州航海学院;2.华东交通大学

作者简介:

通讯作者:

中图分类号:

基金项目:

江西省主要学科学术和技术带头人培养计划,20213BCJL22039;国家自然科学(编号51968022)


Detection and recognition of YOLOv5 pavement cracks based on attention mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统路面裂缝检测实时性差、准确率低的问题,利用深度学习网络在目标检测方面的优势,提出了一种改进的YOLOv5算法,本文称为YOLOv5s-attention,以实现路面裂缝自动化检测与识别。首先,对采集到的裂缝图片用LabelImg标注软件进行手工标记,然后通过改进YOLOv5网络训练得到网络模型参数。最后,利用所建立的模型对裂缝进行验证和预测。除此之外,采用综合评价指标(F1-measure,F1)和平均精度均值(mean Average Precision, mAP)这两个指标来比较原YOLOv5s、YOLOv5s-attention模型在路面裂缝上检测与识别的性能。经YOLOv5s与YOLOv5s-attention比较发现,YOLOv5s-attention检测准确率(Precision)提高1.0%,F1提高0.9%,平均精度均值(mean Average Precision, mAP)提高了1.8%。由此可知,该网络在实现道路裂缝自动化识别上具有一定的现实意义。

    Abstract:

    Aiming at the problem of poor real-time performance and low precision of traditional pavement crack detection, this paper uses the advantages of deep learning network in target detection, and proposes an improved yolov5 algorithm, which is called yolov5s-attention in this paper, to realize the automatic detection and recognition of pavement cracks. Firstly, the collected crack images are manually labeled with LabelImg annotation software, and then the network model parameters were obtained by improving the YOLOv5 network training. Finally, the model is used to verify and predict the cracks. In addition, F1 and mean Average Precision (mAP) are used to compare the performance of the original YOLOv5s and YOLOv5s-attention models in detecting and identifying pavement cracks. The comparison between YOLOv5s and YOLOv5s-attention showed that the accuracy of YOLOv5s attention increased by 1.0%, F1 increased by 0.9%, and mAP increased by 1.8%. It can be seen that the network has certain practical significance in realizing the automatic recognition of road cracks.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-16
  • 最后修改日期:2023-07-19
  • 录用日期:2023-07-28
  • 在线发布日期: 2024-03-25
  • 出版日期: