基于YOLOX-αSMV的带钢材料表面缺陷检测算法
DOI:
作者:
作者单位:

1.华东交通大学软件学院;2.江西交通职业技术学院机电工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学(61861016);江西省科技支撑计划重点项目(20161BBE50081)


YOLOX-αSMV algorithm for surface defect detection of strip steel material
Author:
Affiliation:

Fund Project:

This work is supported by the National Natural Science Foundation of China (61861016), and the Science and Technologies Project of Jiangxi Province (20161BBE50081).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对YOLOX算法在钢材表面缺陷检测中特征提取不充分、多目标缺陷检测能力较弱等问题,提出改进损失函数的多维度特征融合带钢材料表面缺陷检测算法。首先,在Backbone部分应用SPP_SF保留多尺度特征信息,提高分类精度。其次,在Neck部分加入多维度特征融合模块MDFFM,将通道、空间、位置信息融入特征向量中,加强算法的特征提取能力。最后,引入Varifocal Loss和α-CIoU加权正负样本,提高预测框的回归精度。实验结果表明,YOLOX- αSMV在NEU-DET数据集中的mAP@0.5:0.95达到了47.54%,较YOLOX算法提高了3.43%。在保持检测速度基本不变的情况下,对模糊缺陷和小目标缺陷的识别、定位能力明显提升。

    Abstract:

    In order to solve the problems of insufficient feature extraction and weak ability of multi-target defect detection of YOLOX algorithm in steel surface defect detection, a multi-dimensional feature fusion strip material surface defect detection algorithm based on improved loss function is proposed. First of all, apply SPP_SF to the Backbone part to retain multi-scale feature information and improve classification accuracy. Secondly, the multi-dimensional feature fusion module MDFFM is added in the Neck part to integrate the channel, space and position information into the feature vector to strengthen the feature ex-traction ability of the algorithm. Finally, the introduction of Varifocal Loss and α-CIoU weighted positive and negative samples to improve the regression accuracy of the prediction box. The experimental results show that YOLOX-αSMV in NEU-DET data set mAP@0.5:0.95 reaches 47.54%, which is 3.43% higher than YOLOX algorithm. While keeping the detection speed basically unchanged, the ability to identify and locate fuzzy defects and small target defects is significantly improved.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-05
  • 最后修改日期:2023-08-27
  • 录用日期:2023-09-01
  • 在线发布日期: 2024-03-26
  • 出版日期: