考虑材料硬度与缩径量的载运工具橡胶衬套各向刚度优化设计
DOI:
作者:
作者单位:

1.华东交通大学机电与车辆工程学院;2.建新赵氏科技有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

博士后科学(2022M711352)、江西省自然科学基金资助项目(20232BAB214047)、江西省教育厅科技项目(GJJ210630)和国家自然科学基金(51806066)资助。


Optimal Design of Isotropic Stiffness for Rubber Bushing by Considering Material Hardness and Diameter Reduction for Conveyance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】橡胶衬套作为新能源汽车、特种车辆、动车组等载运工具的重要连接件,对整车操纵稳定性起着至关重要的作用。为了避免工程实践中反复调试的繁琐工作,【方法】本文提出了一种考虑材料硬度与缩径量的橡胶衬套各向刚度(径向刚度、轴向刚度、偏摆刚度和扭转刚度)优化设计方法。首先,采用Ogden模型作为橡胶衬套的本构模型,通过试验设计与有限元分析相结合的方法,计算不同内芯外径、橡胶高度、缩径量和材料硬度下衬套各向刚度;然后,建立各向刚度的二阶响应面模型,利用拉丁超立方抽样和方差分析,检验响应面模型精度;最后,根据遗传算法,建立含各向刚度为设计变量的多目标优化模型,并对优化结果进行试验验证。【结果】研究表明:径向刚度、轴向刚度、偏摆刚度和扭转刚度的试验结果与目标值的相对误差分别为7.72%、9.06%、-6.33%和9.16%,均在±10%以内,满足工程应用的要求。【结论】试验结果验证了所建立的各向刚度二阶响应面模型的有效性,以及所提出优化设计方法的可行性,为橡胶衬套产品设计提供指导,可极大地缩短橡胶衬套的研发周期。

    Abstract:

    【Objective】As an important connecting part of new energy vehicles, special vehicles, locomotives and other means of transportation, rubber bushing plays a crucial role in the stability of the whole vehicle handling.【Method】In order to avoid the tedious work of repeated debugging in engineering practice, paper proposes an optimal design method of rubber bushing all-directional stiffness (radial, axial, yaw and torsional stiffness) taking into account the material hardness and diameter reduction. Firstly, the Ogden model is used as the constitutive model of rubber bushing. Second, by combining experimental design with finite element analysis, the isotropic stiffness of rubber bushing with different inner core outer diameter, rubber height, diameter reduction and material hardness is calculated. The second-order response surface model of isotropic stiffness is established, accuracy of the model is verified by Latin hypercube sampling and variance analysis. Finally, a multi-objective optimization method of isotropic stiffness of rubber bushing is proposed using genetic algorithm.【Result】The results show that the relative errors between the measured radial, axial, yaw and torsional stiffness and objective stiffness are 7.72%, 9.06%, -6.33% and 9.16% respectively, which are all within ±10% and meet the requirements of engineering application.【Conclusion】The validity of the established second-order response surface model of isotropic stiffness and the feasibility of the proposed optimization design method are verified to provide guidance for the product design of rubber bushing, which can greatly shorten the research and development cycle of rubber bushing.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-19
  • 最后修改日期:2023-12-04
  • 录用日期:2023-12-05
  • 在线发布日期: 2024-03-26
  • 出版日期: