基于YOLOv5s的无人机小目标检测算法研究
DOI:
作者:
作者单位:

大连交通大学

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁“百千万人才工程”培养经费资助项目;辽宁省教育厅科学研究计划资助项目(LJKMZ20220835)


Research on UAV Small Target Detection Algorithm Based on YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】针对无人机航拍图像中目标尺度多样、背景复杂、小目标密集的特点,提出了基于YOLOv5s的小目标检测算法LM-YOLO。【方法】首先,增加小目标检测头并采用K-DBSCAN聚类算法优化锚框,生成更适合小目标检测的锚框,提高算法对小目标的检测精度。然后,设计更高效的MobileNetV3-CBAM作为特征提取网络,减小网络模型大小。最后,在特征融合网络引入大核选择性注意力机制LSK,增加模型对相似目标的分辨率。【结果】在公开数据集VisDrone2019上的实验结果表明,与基准模型YOLOv5s相比,LM-YOLO对所有目标的平均检测精度提升了7.6%,模型大小压缩了45%。【结论】实验验证了本文算法可以在降低模型大小的同时保持良好的检测精度,适用于航拍图像的目标检测任务。

    Abstract:

    【Objective】Aiming at the characteristics of various target scales, complex background and dense small targets in aerial images of unmanned aerial vehicles,a small target detection algorithm LM-YOLO based on YOLOV5 is proposed.【Method】Firstly,increase the small target detection head and K-DBSCAN clustering algorithm is used to optimize the anchor frame ,so as to generate an anchor frame more suitable for small target detection and improve the detection accuracy of the algorithm.Then,a more efficient MobileNetV3-CBAM is designed as a feature extraction network to reduce the size of the network model.Finally,the large kernel selective attention mechanism LSK is introduced into the feature fusion network to increase the resolution of the model to similar targets.【Result】The experimental results on the public data set VisDrone2019 show that the average detection accuracy of LM-YOLO for all targets is improved by 7.6% and the model size is reduced by 45% compared with the benchmark model YOLOV5.【Conclusion】Experiments show that the proposed algorithm can reduce the model size while maintaining good detection accuracy, and is suitable for the target detection task of aerial images.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-15
  • 最后修改日期:2024-04-18
  • 录用日期:2024-04-25
  • 在线发布日期:
  • 出版日期: