基于改进YOLOv7的公路路面病害检测算法
DOI:
作者:
作者单位:

江西省南昌市华东交通大学信息工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Highway pavement disease detection algorithm based on improved YOLOv7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【目的】针对公路路面病害存在类别多、尺度差异大和背景复杂度高等问题,提出一种改进YOLOv7的公路路面病害检测算法。【方法】首先,在颈部网络中引入显示视觉中心模块EVC,充分获取输入特征的全局信息与局部信息,提高对小目标的特征提取能力;其次,设计特征融合模块RFECSP,增强对多类、多尺度病害的特征融合能力,解决细节信息丢失与受无关区域影响导致检测精度低的问题;最后,使用MPDIoU损失函数提高网络的收敛速度和检测精度。【结果】实验结果表明,本文算法在RDD 2020数据集上取得了良好的效果,与YOLOv7算法相比平均检测精度提升了3.13%,且优于SSD、YOLOv4、YOLOv5等算法,【结论】对于路面病害具有良好的检测效果,能够满足对公路路面不同类型病害的检测要求。

    Abstract:

    【Objective】Aiming at the problems of highway pavement distresses, such as the existence of many categories, large scale differences and high background complexity, a highway pavement distress detection algorithm with improved YOLOv7 is proposed.【Method】Firstly, the display visual center module EVC is introduced into the neck network to fully obtain the global and local information of the input features and improve the feature extraction ability for small targets; secondly, the feature fusion module RFECSP is designed to enhance the feature fusion ability for multi-class and multi-scale lesions, and to solve the problem of the loss of detail information and the influence of irrelevant regions that lead to the low detection accuracy; finally, the MPDIoU loss function is used to improve the network. MPDIoU loss function to improve the convergence speed and detection accuracy of the network.【Result】The experimental results show that the algorithm in this paper achieves good results on the RDD 2020 dataset, improves the average detection accuracy by 3.13% compared with the YOLOv7 algorithm, and outperforms the algorithms such as SSD, YOLOv4, YOLOv5, etc.【Conclusion】The algorithm in this paper has a good effect of detecting pavement diseases, and is able to satisfy the requirements of detecting different types of diseases on highway pavements.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-22
  • 最后修改日期:2024-05-09
  • 录用日期:2024-05-13
  • 在线发布日期:
  • 出版日期:
关闭