U469.1 O157.5
设G是一个图,用y(G)和E(G)表示它的顶点集和边集,并设g(x)和f(x)是定义在V(G)上的两个整数值函数,且对C每个x∈V(G),有5/2r-1≤g(x)≤f(x),则图G的一个支撑子图,称为G的一个(g,f)-因子,如果对每个x∈V(G),有g(x)≤d,(x)≤f(x).图G的(g,f)-因子分解是指E(G)能划分成边不交的(g,f)-因子,设F=|F1,F2,…,Fm|和H分别是图G的因子分解和子图,若对所有1≤i≤m有|E(H)∩E(Fi)|=r,则称,和H(m,r)-正交.本文证明:若G是一个(mg m-1,mf-m 1)-图,H是G中任一有mr条边的子图,则G有一个(g,f)-因子分解与H(m,r)-正交。
桂国祥 刘展鸿.与任意图(m, r)-正交的(g, f)-因子分解[J].华东交通大学学报,2005,(1):149-151..(g. f)-Factorizations ( m, r) - Orthogonal to an Arbitrary Graph[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2005,(1):149-151