基于均值聚类的车牌定位技术研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用强制综合聚类中心的均值聚类思想对车牌图像进行区域分类,在HLS颜色空间下,利用数理统计的方法得到聚类颜色中心,并对目标图像进行强制聚类,以最终获得只包括车牌四种颜色的待处理的图像,然后利用形态学、人工神经元网络等技术对车牌进行车牌识别.该方法在实践中进行了验证,比基于二值化和灰度化处理思路的定位效果更好,能对多种不同环境下的拍摄的车牌进行有效的识别.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

蒋先刚; 郝励; 刘玄第; 黄书明; 王亚伟.基于均值聚类的车牌定位技术研究[J].华东交通大学学报,2007,24(4):59-63.
.[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2007,24(4):59-63

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-22
  • 出版日期:
关闭