基于改进的FCM在人脑MR图像分割中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决模糊C-均值聚类(FCM)算法在医学图像分割中存在计算量大、运行时间过长以及样本集不理想会导致不好的聚类结果的问题,提出了相应的改进算法.利用收敛速度快的K均值聚类法得到的聚类中心作为FCM算法的初始聚类中心,并将样本对于各个聚类的隶属度之和为1这一约束条件,改变为所有样本对各类的隶属度总和等于样本总数.实验表明,该方法用于人脑磁共振图像分割时,运行速度提高了近3倍,分割准确度明显得到提高.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

刘建辉; 曹玉红; 刘遵雄; 袁佳乐.基于改进的FCM在人脑MR图像分割中的应用[J].华东交通大学学报,2008,25(6):51-54.
.[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2008,25(6):51-54

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-22
  • 出版日期:
关闭