PSO-SVM算法在智能建筑环境监控系统中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对智能建筑环境监控系统中,多个传感器独立工作可能会造成系统误判的问题,提出了一种基于粒子群优化支持向量机(PSO-SVM)的环境质量综合评价模型,即利用粒子群算法快速优化支持向量机的惩罚参数和核函数参数,然后采用Zig Bee无线传感网络采集的环境数据对PSO-SVM分类模型进行训练和测试。实验结果表明PSO-SVM分类器对环境质量判断的平均精度达到94.44%,且分类结果稳定。将这种方法应用于智能建筑环境监控系统中,可以增加系统监测数据的准确性,提高系统工作的可靠性。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

傅军栋; 邹欢; 康水华. PSO-SVM算法在智能建筑环境监控系统中的应用[J].华东交通大学学报,2016,33(1):121-127.
.[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2016,33(1):121-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-06
  • 出版日期:
关闭