张量分解算法研究与应用综述
DOI:
作者:
作者单位:

作者简介:

熊李艳(1968—),女,教授,研究方向为数据挖掘机器学习。

通讯作者:

中图分类号:

TP301.6

基金项目:

江西省研究生创新基金(YC2016-S261);国家自然科学基金项目(61363072,61462027,6156202);江西省自然科学基金项目(2016BAB212050);江西省科技成果转移转化计划项目(20161BB190032,20142BB190027)


Research and Application of Tensor Decomposition Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    张量分解是处理大规模数据的一种方法,它能有效的对数据进行降阶,由于高阶张量具有唯一性、对噪声更鲁棒、不破坏原数据的空间结构和内部潜在信息等优点,因此被广泛应用于神经科学、信号处理、图像分析、计算机视觉等领域。 论文首先对传统的降维方法进行了介绍,指出这些方法存在的问题和不足。 其次对张量分解的三种经典算法:CP 分解、Tucker 分解以及非负张量分解从算法的求解、基本思想、算法框架以及算法应用等方面进行概括分析,对 CP 分解算法和 Tucker 分解算法从多角度进行对比分析。 最后对张量分解的现状以及实际应用进行了归纳和总结,并对未来的研究发展趋势进行了分析和展望。

    Abstract:

    Tensor decomposition is a significant method to deal with large-scale data, which can reduce the data effectively. The high-order tensor is widely used in neuroscience, signal processing, image analysis, computer vi- sion and other fields as it has such advantages as uniqueness, robustness to noises and zero impact on the origi- nal data of the spatial structure and internal potential information. In this paper, the traditional dimensionality reduction methods were introduced firstly, and their problems and shortcomings were also discussed. Secondly, general analysis of three classical algorithms of tensor decomposition was carried out from the aspects of algo- rithm, basic ideas, algorithm framework and algorithm applications of CP decomposition, Tucker decomposition and non-negative tensor decomposition. Then, The CP decomposition algorithm and the Tucker decomposition algorithm were compared and analyzed from different angles. Finally, the present situation, practical application and future research trends of tensor decomposition were summarized and analyzed.

    参考文献
    相似文献
    引证文献
引用本文

熊李艳,何雄,黄晓辉,黄卫春.张量分解算法研究与应用综述[J].华东交通大学学报,2018,35(2):120-128.
Xiong Liyan, He Xiong, Huang Xiaohui, Huang Weichun. Research and Application of Tensor Decomposition Algorithm[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2018,35(2):120-128

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-25
  • 出版日期:
关闭