基于支持向量机的弓网间电弧诊断策略
DOI:
作者:
作者单位:

作者简介:

刘仕兵(1970—),男,教授,主要研究方向为电气化铁路接触网技术。

通讯作者:

中图分类号:

U225

基金项目:

国家自然基金项目(11162006);江西省教育厅科技项目(GJJ150530);江西省教育厅科技项目(GJJ160488)


Diagnosis Strategy for Arc State Between Catenary and Pantograph Based on Support Vector Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电力机车在运行的过程中,通过受电弓与接触网间的电接触而获取电能,在机车受流过程中弓网间电弧是较为常见的一个现象。 弓网间的电弧不仅会对接触网与受电弓造成不同程度上的损伤,同时也会对电力机车上的电力设备造成一定的干扰。 弓网间的电弧具有随机性,发生的原因也具有多样性,因此对电弧进行诊断具有一定难度。 针对目前对弓网间电弧诊断存在的技术上的问题,文章基于支持向量机(support vector machine,SVM)来实现对弓网间电弧的诊断。 在获取弓网间电流的原始数据后,通过计算出原始数据的功率谱熵,构造出电弧诊断所需的特征向量,应用支持向量机对这些特征向量进行分类,能实现对弓网间电弧电流的正常电流的正确区分。 仿真结果表明,应用本文所建立起的诊断模型对样本进行诊断,结果正确率能达到 90%以上,为弓网间电弧诊断提供了一个实用的方法和研究思路。

    Abstract:

    The electric locomotive obtains the electric energy through the electrical contact between pantograph and catenary. And the arc fault between the pantograph and catenary is a common phenomenon when the electric locomotive is running. The arc fault in pantograph-catenary system will not only damage the catenary and the pantograph, but also disturb the operation of the electric equipment in electric locomotive. The arc fault has the characteristic of randomness and irregularity, so it is difficult to diagnose the fault timely and accurately. Ac- cording to the existing problems in arc fault diagnosis, this paper introduced a new diagnosis method based on the support vector machine(SVM). After obtaining the raw data of the current in pantograph-catenary system, the power spectrum entropy was adopted to extract the feature vectors needed by arc fault diagnosis and the SVM was used to classify these feature vectors. Then, the normal current from arc fault can be recognized. The re- search results show that the diagnosis model established in this paper has a high accuracy in classifying the fault state and normal state, which provides an useful method and research approach for arc fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

刘仕兵,曾聿田,刘欢,马志方.基于支持向量机的弓网间电弧诊断策略[J].华东交通大学学报,2018,35(2):136-143.
Liu Shibing, Zeng Yutian, Liu Huan, Ma Zhifang. Diagnosis Strategy for Arc State Between Catenary and Pantograph Based on Support Vector Machine[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2018,35(2):136-143

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-25
  • 出版日期:
关闭