轨道不平顺预测随机模型的SVM-MC求解方法
DOI:
作者:
作者单位:

作者简介:

许玉德(1965—),男,教授,博士,博士生导师,研究方向为轨道管理,轨道养修技术。

通讯作者:

中图分类号:

U216

基金项目:

国家自然科学基金项目(51678445)


SVM-MC Method for Solving Stochastic Model of Track Irregularity Prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    实现铁路轨道科学管理的前提是对轨道几何不平顺的发展趋势进行有效预测,预测模型从确定性向随机性模型转变,其重点是如何进行模型的求解。 论文对轨道高低不平顺的预测随机模型建立了一种支持向量机—蒙特卡洛(SVM-MC)两阶段求解方法,第一阶段利用 ε-SVM 算法确定属于小样本集的模型参数,第二阶段运用蒙特卡洛模拟对随机过程进行仿真,得到高低不平顺标准差的预测值。 与以往的轨道不平顺预测方法相比,所建立的两阶段求解方法解决了预测中小样本、非线性的问题,且预测精度在计算机容量和速度足够时可以得到保证。 在沪昆有砟线路的应用表明,所提出的随机预测方法及求解算法, 预测效果良好,平均相对误差为 4.63%,可满足现场的工程应用,为养护维修计划决策提供技术支持。

    Abstract:

    The precondition of realizing the scientific management of railway track is to predict the development trend of track geometric irregularity. The prediction model changes from certainty model to randomness model, which puts emphasis on the solution method for this model. In this paper, a two-stage method of support vector machine- Monte Carlo simulation (SVM-MC) for solving the prediction stochastic model of track irregularity was established. In the first stage, the ε-SVM algorithm was used to determine the model parameters which belong to small sample set, and in the second stage, the Monte Carlo simulation was used to simulate the stochastic pro- cess, and the standard deviation of the height irregularity was obtained. Compared with the previous method of track irregularity prediction, the established two-stage solution method solves the problems of small samples and non-linear prediction, and the prediction accuracy can be guaranteed when the computer capacity and speed are sufficient. A case in Shanghai and Kunming ballasted line shows that the proposed random prediction method and algorithm have good prediction results, and the average relative error is 4.63%. This method can meet the engineering application in the field and provide technical support for the maintenance plan decision.

    参考文献
    相似文献
    引证文献
引用本文

许玉德,刘一鸣,沈坚锋.轨道不平顺预测随机模型的SVM-MC求解方法[J].华东交通大学学报,2018,35(3):1-7.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-25
  • 出版日期: