考虑环境影响限制的交通分配模型及算法
DOI:
作者:
作者单位:

作者简介:

何胜学(1976—),男,副教授,博士,主要研究方向为超级网络,交通网络建模,供应链建模与优化。

通讯作者:

中图分类号:

U491

基金项目:

上海市自然科学基金项目(18ZR1426200);上海理工大学人文社科攀登重点项目(SK17PA02);上海市一流学科建设项目(S1201YLXK)


Traffic Assignment Model and Algorithm with the Environment In- fluence Constraints
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对交通环境影响限制对出行者出行线路选择的影响,建立了对应交通流分配模型,并为模型设计了有效的增广拉格朗日乘子求解算法。首先,基于交通环境影响特征将环境影响限制约束分为独立路段式、独立节点式和区块限制约束 3 种。其次, 通过在经典用户均衡模型中添加环境影响限制约束,得到考虑环境影响的交通分配模型。 通过定义广义行程时间和利用 KKT 条件,分析了新模型对应的出行者路线选择原则。最后,为新模型设计了嵌套 Frank-Wolfe 算法的部分增广拉格朗日乘子算法。 数值算例验证了模型与算法的有效性。 研究拓展了现有交通流分配理论的研究视角,也可为交通管理者考虑环境影响提供理论支持。

    Abstract:

    In view of the limitation of the traffic environment influence on the traveling route choices, the corre- sponding traffic assignment model was built and the related augmented Lagrange multiplier method was designed. Firstly, based on the features of traffic environment influence, the constraints of limiting environment influence were divided into independent link constraint, independent node constraint and block limitation constraint. Sec- ondly, by adding the environment influence limitation into the classical user equilibrium model, the traffic as- signment model with environment influence was obtained. Through defining the generalized travel time and using the KKT conditions, the principle of selecting route corresponding to the new model was analyzed. Finally, an augmented Lagrange multiplier method embedding the Frank -Wolfe algorithm was designed to solve the new model. The numerical example verified the effectiveness of the new model and method. This research not only extends the research viewpoint of the traffic assignment theory, but also provides the theoretical support for traf- fic administrators when environment influence is considered.

    参考文献
    相似文献
    引证文献
引用本文

何胜学.考虑环境影响限制的交通分配模型及算法[J].华东交通大学学报,2019,36(1):87-93.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-31
  • 出版日期: