基于图形识别和GRNN网络的照明设计自动化系统
DOI:
作者:
作者单位:

作者简介:

郑晓芳(1963—),女,教授,研究方向为建筑电气与智能化、数据库。

通讯作者:

中图分类号:

TU113.66

基金项目:


Lighting Design Automation System Based on Graphic Recognition and GRNN Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    我国建筑照明设计主要采用利用系数法,因其计算相对复杂而在实际设计中需花费大量的计算时间,国内一些公司如苏州浩展软件股份有限公司采用人工框选房间尺寸、反复校验规范标准来实现照明设计,但误差较大。 照明设计自动化系统运用平均积分投影函数和形态学操作提取建筑承重墙,再使用改进的种子填充算法识别普通墙体,能有效提取出所有墙体并提取出各房间的大小尺寸。 其次提取 Gabor 特征并利用贝叶斯公式级联汉字粗分类与细分类的两级分类器可精确得到房间的类型和标高等房间参数。 最后使用 dialux 采集房间中满足照明设计要求的布灯方案作为样本训练广义神经网络,采用 4 重交叉验证法优化光滑因子,优化过的 GRNN 网络有更高的识别率。 经过案例仿真证明照明设计自动化系统能迅速自动得到符合规范的灯具布置方案。

    Abstract:

    China's architectural lighting design mainly adopts the method of utilization factor with relatively com- plicated calculation and it takes a lot of calculation time in the actual design. There may appear large errors when some domestic companies complete lighting design by getting room sizes non-automatically and checking the specification repeatedly. The electrical lighting design automation system uses the average integral projection function and morphological operation to extract the load-bearing walls and improve seed filling algorithm to i- dentify common walls, which can effectively extract all the walls in the building and extract the size of each room. By extracting the Gabor feature and using the Bayesian formula which integrates the classifier of Chinese character rude classification with the classifier of Chinese character particular classification, it can accurately obtain room parameters including the types of rooms. Then, it applies dialux to collect the lighting scheme in the rectangular room that meets the lighting design requirements as a training sample to train the generalized regres- sion neural network (GRNN). In order to improve the prediction accuracy, the 4-fold cross-validation method is used to optimize the smoothing factor and obtain the best input and output values. Experiments show that the op- timized GRNN network has faster convergence speed. The case simulation proves that the proposed electric lighting design automation system can quickly and automatically obtain the lighting layout plan that meets the specifications.

    参考文献
    相似文献
    引证文献
引用本文

郑晓芳,邱运霞,傅军栋,陈晴.基于图形识别和GRNN网络的照明设计自动化系统[J].华东交通大学学报,2019,36(5):82-90.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-31
  • 出版日期: