改进A*算法的物流无人机运输路径规划
作者:
作者单位:

作者简介:

许卫卫(1995—),男,硕士研究生,研究方向为交通运输规划与管理。

通讯作者:

中图分类号:

V279.3

基金项目:

国家自然科学基金面上项目(61573181);南京航空航天大学研究生创新基地(实验室)开放基金项目(kfjj20180726)


Research on Transportation Path Planning for Logistics UAV Based on Improved A* Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对低空环境下物流无人机运输路径规划问题,综合考虑低空规划空域、物理性能等内外限制,设计了一种改进 A* 算法用以快速解算路径。 该算法以栅格法飞行区域建模为基础,为适用无人机航空物流运输,在成本函数中引入栅格危险度并增加飞行时间、能源消耗等代价,同时采用动态加权法对估计函数的权值赋值。 在既定的路径规划环境及物流无人机性能约束下, 仿真结果表明:该算法能快速规划出危险度小、能耗少的避障运输路径,且性能相比原算法、蚁群算法优;并得出最佳路径所对应的栅格粒度大小与代价权重值取值,验证了本算法的有效性。

    Abstract:

    To solve the problem of logistics UAV transportation path planning in low-altitude environment, considering the internal and external constraints of low-altitude planning airspace and physical performance, an improved A* algorithm is designed to plan the path quickly. To apply the method to the transportation for logistics UAV, the algorithm uses the grid method to model the environment. It also introduces grid’s danger rate and the cost of flight time and energy consumption in the cost function. At the same time, the dynamic weighting method is applied to estimate the function. The simulation results show that the algorithm can plan the obstacle-avoidance transportation paths with low risk and low energy consumption quickly under the constraints of the assumed environment and UAV performances. Also, its performance is superior to the original algorithm and ant colony algorithm. Meanwhile, the corresponding grid length and weight value of the optimized path are obtained, and the effectiveness of the algorithm is verified.

    参考文献
    相似文献
    引证文献
引用本文

许卫卫,张启钱,邹依原,张洪海,陈雨童.改进A*算法的物流无人机运输路径规划[J].华东交通大学学报,2019,36(6):39-46.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-01
  • 出版日期: