基于PSO-BP算法的联盟航线市场份额预测
作者:
作者单位:

作者简介:

陈娴(1995—),女,硕士研究生,研究方向为交通运输经济。

通讯作者:

中图分类号:

[U8]

基金项目:

南京航空航天大学创新基金资助项目(kfjj20180723)


Market Share Forecasting of Airline Alliance Route Based on PSO-BP Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    联盟背景下航线产品与单个航班相比,属性复杂、合作风险高。 产品属性差异导致市场分担率不同,航线市场份额的精准预测是联盟合作伙伴选择与协同价值计算的基础。 因此,充分利用联盟运输数据,在达美航空 QSI 指标基础上,加入了航线竞争程度、联盟合作关系等指标,建立了适用于联盟背景下国际航线产品市场份额预测的指标体系。 考虑到影响因素与 QSI 值间的非线性关系,引入 BP 神经网络进行市场份额与影响因素的机器学习,建立了两者间的非线性映射。 为防止 BP 神经网络陷入局部极小值,再引入粒子群算法确定神经网络初始权值,建立 PSO-BP 算法的 QSI 模型。 结果表明,基于 PSO-BP 算法的 QSI 模型能更好预测国际航线市场份额,绝对误差控制在 1%。

    Abstract:

    Under the context of alliances, airline products have complex attributes and high risk of cooperation compared to individual flights. Differences in product attributes lead to different market share. Airline alliance partner selection and collaborative value calculation are based on accurate forecasting of airline market share. Therefore, based on the QSI (Quality of Service Index) indicators of Delta Airline, this paper made full use of the alliance transportation data and added indicators such as route competition degree and alliance cooperation rela- tionship to establish market share forecasting for international alliance route products. When fitting the nonlinear relationship between the eight factors and QSI value, considering that the parameter method needs to determine the form in advance, it introduced BP neural network to fit the nonlinear relationship between market share and factors. In order to solve the problem that the BP neural network falls into the local minimum value, the particle swarm optimization algorithm was introduced to determine the initial weight of the neural network and finally the QSI model of the PSO-BP algorithm was established. The results show that the QSI model based on PSO-BP al- gorithm can better predict the market share of international routes and the absolute error is below 1%.

    参考文献
    相似文献
    引证文献
引用本文

陈娴,朱金福,刘月.基于PSO-BP算法的联盟航线市场份额预测[J].华东交通大学学报,2020,37(1):61-69.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-11
  • 出版日期: