基于高斯金字塔的视觉里程计算法研究
作者:
作者单位:

作者简介:

刘瑞(1994—),女,硕士研究生,主要研究方向为图像处理,视觉里程计。

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(61763012)


Research on Visual Odometry Based on Gaussian Pyramid
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对视觉里程计常用角点提取算法因角点分布不均匀而导致运动信息偏差较大的问题,提出一种基于高斯金字塔的角点提取算法。 该算法在角点提取过程中先采用高斯金字塔算法对图片进行尺度压缩,纹理丰富区域压缩纹理,纹理稀疏区域聚集纹理,得到小尺度顶图;然后采用 Shi-Tomasi 算法提取小尺度顶图角点特征以实现角点粗定位,最后将粗定位信息映射回细节丰富的原图进行角点精准定位,得到图片特征信息。最后,利用金字塔 LK 光流法追踪角点,根据相机对极几何约束模型恢复运动信息。 论文采用 KITTI 数据集,与原 Shi-Tomasi 算法、Harris 算法、Fast 算法进行了对比实验,结果表明本算法可有效改善角点分布均匀性,提高视觉里程计运动信息恢复的精度。

    Abstract:

    Aiming at the problem that many feature extraction algorithms for visual odometry have large deviation of motion information due to uneven corner distribution, a corner extraction method based on Gaussian Pyramid is proposed. Firstly, the algorithm adopted the Gaussian Pyramid algorithm to compress the image scale, compressed the texture in the area of rich texture and aggregated texture in the area of sparse texture. Then, the small-scale top diagram was obtained and the Shi-Tomasi algorithm was used to extract the corners of the top graph for rough feature location. The information was mapped back to the original graph with rich details for accurate corner positioning, and the feature information of the picture was obtained. Finally, the Pyramid LK optical flow method was used to track the corner points, and the motion information is obtained according to the geometric constraint model of camera polar line. In this paper, the KITTI data set was used to compare with the original Shi-Tomasi, Harris, Fast Algorithms. The results show that the algorithm can effectively improve the uniformity of corner distribution and improve the accuracy of motion information recovery of visual odometry.

    参考文献
    相似文献
    引证文献
引用本文

刘瑞,徐雪松,曾昱.基于高斯金字塔的视觉里程计算法研究[J].华东交通大学学报,2020,37(4):48-53.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-11
  • 出版日期: