基于联合抗噪算法的滚动轴承故障诊断研究
作者:
作者单位:

作者简介:

刘冲(1995—),男,硕士研究生,研究方向为机械故障诊断。

通讯作者:

中图分类号:

TP165

基金项目:


Research on Joint Anti-Noise Algorithm and Its Application in Rolling Bearing Fault Diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    轴承通常工作于复杂噪声环境下,使得时域振动信号容易受到各种噪声的污染,从而误导诊断结果。 针对以上问题,提出基于一维卷积自编码(1D-DCAE)和一维卷积神经网络(1D-CNN)的联合抗噪故障诊断算法。 为了模拟真实噪声环境,在原始振动信号中添加不同信噪比的高斯噪声,用 1D-DCAE 对原始信号降噪,再将降噪信号用于 1D-CNN 进行故障诊断。 基于全卷积神经网络搭建 1D-DCAE 模型,并舍弃池化层以降低信息丢失,以提高联合诊断模型的抗噪能力。 结果表明:采用基于全卷积网络搭建的 1D-DACE 有更好的降噪效果,改进后的模型能自适应诊断各种噪声环境下的故障。

    Abstract:

    Bearings usually work in the complex noise environment, which makes the time-domain vibration signal easy to be polluted by various noises, thus misleading the diagnosis results.To solve this problem, a method combining a one-dimensional (1-D) denoising convolutional autoencoder (DCAE) and a (1-D) convolutional neural network (CNN) is proposed. In order to simulate the real noise environment, Gaussian noise with different signal-to-noise ratio was added to the original vibration signal. 1D-DCAE was used to denoise the original signals, and then the denoised signal was used for 1D-CNN fault dignosis.1D-DCAE was built based on full convolution network (FCN) and the pooling layer was discarded to improve the anti-noise capability. The results show that FCN-based 1D-DCAE has better noise reduction effect, and the improved model can adaptively diagnose faults of various noise environments.

    参考文献
    相似文献
    引证文献
引用本文

刘冲.基于联合抗噪算法的滚动轴承故障诊断研究[J].华东交通大学学报,2020,37(4):82-87.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-11
  • 出版日期: