低照度边缘增强的语义分割模型研究
作者:
作者单位:

作者简介:

罗晖(1969—),男,教授,研究方向为多媒体信息处理,无线通信系统,无线多媒体传感器网络,压缩感知。

通讯作者:

中图分类号:

TP391

基金项目:


Research on Semantic Segmentation Model of Low-Illumination Edge Enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高对低照度图像的语义分割精度,提出了一种基于 RPN 的边缘增强语义分割模型(EESN)。 在该模型中,首先利用深度残差网络提取图像的高阶语义特征,并通过 RPN 快速生成待分割目标候选区域;然后,利用设计的融合算法对候选区域进行融合,并剔除重复的候选区域;最后,对融合的目标候选区域做低照度边缘搜索,并利用失真代价较小的局部增强算法对低照度边缘进行特征增强。 将 EESN 用于 Pascal VOC12 和 Cityscapes 两个数据集的语义分割中,分别获得了 81.2%和 67.6%的 mIoU,该结果证明了 EESN 对具有低照度边缘的图像具有较好的分割性能。

    Abstract:

    In order to improve the accuracy of semantic segmentation of low -illumination images, an edge en hanced semantic segmentation model (EESN) based on RPN is proposed. Firstly, higher-order semantic features of images were learned by using a deep residual network, and the region proposals were quickly generated by RPN. Secondly, a fusion algorithm was designed to fuse the region proposals and eliminate the repeated candidate regions. Finally, low-illumination edges were searched by the edge search box, and their features were enhanced by using the local enhancement algorithm with low distortion. EESN was used in semantic segmentation of Pascal VOC12 dataset and Cityscapes dataset, and 81.2% and 67.6% of pixel intersection-over-union (mIoU) on these two datasets were obtained. The experimental results also demonstrate that EESN has good segmentation performance for images with low illumination edge.

    参考文献
    相似文献
    引证文献
引用本文

罗晖,芦春雨.低照度边缘增强的语义分割模型研究[J].华东交通大学学报,2020,37(4):116-124.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-11
  • 出版日期: