基于长短期记忆网络的城市建筑垃圾产量预测
作者:
作者单位:

作者简介:

孙柯华(1982—),男,工程师,总经理,研究方向为建筑垃圾航运物流。E-mail:zhatuxiaona@163.com。

通讯作者:

中图分类号:

U294.1+3;TU993.3

基金项目:

国家自然科学基金项目(71974052);江苏省社会科学基金项目(18GLB013);江苏省水利科技项目(2018022)


LSTM-Based Forecasting for Urban Construction Waste Generation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了有效解决建筑垃圾预测问题,从有限样本点的单变量时序数据出发,提出一种基于 3 层长短期记忆(LSTM)网络的时间序列预测方法,涉及 Dropout 层与网络结构设计、网络训练与预测过程实现算法等。 并以上海市建筑垃圾统计数据为例进行数值实验,通过与其他时间序列预测模型的实验对比,验证了 LSTM 预测模型在建筑垃圾产量预测的有效性和准确性。

    Abstract:

    Accurately predicting the amount of construction waste is of great significance for carrying out the recycling treatment of construction waste and guiding the government to formulate relevant policies. However, the lack of reliable forecasting methods and historical data makes it difficult to predict the construction waste in the long- or short-term planning. On the basis of the univariate time series data of limited sample points, this paper puts forward a short and long memory(LSTM) time series prediction method to effectively solve the problem of construction waste prediction, which involves network structure with dropout layer and the algorithm of network training and prediction process. Taking Shanghai as a case,compared with other time series prediction models, numerical experiments were conducted to verify the effectiveness and accuracy of the LSTM prediction model in the filed of predicting construction waste generation.

    参考文献
    相似文献
    引证文献
引用本文

孙柯华,蔡婷,王伟,吴晓南,刘弘昱,郑虢.基于长短期记忆网络的城市建筑垃圾产量预测[J].华东交通大学学报,2020,37(6):28-35.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-11
  • 出版日期: