基于频域特征波形模式匹配的故障诊断方法研究
作者:
作者单位:

作者简介:

焦卫东(1970—),男,教授,博士,博士生导师,研究方向为智能检测与信号处理,机械动力学,状态监测与故障诊断。E-mail:jiaowd1970@zjnu.cn。

通讯作者:

中图分类号:

U279

基金项目:

国家自然科学基金项目(51575497);浙江省城市轨道交通智能运维技术与装备重点实验室自主研究项目(ZSDRTZZ2020002)


Approach for Fault Diagnosis Based on Pattern Match of Characteristic Waveforms in Frequency Domain
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用同一模式类振动观测样本在 FFT 幅值谱特征波形上的整体相似性,提出一种基于频域特征波形模式匹配的故障诊断方法,应用于滚动轴承故障诊断并与一些典型的模式识别诊断法进行了对比研究。 研究发现:当测试样本所属模式类与训练样本相同时,频域特征波形模式匹配的余弦相似度、相关相似度或互信息相似度均达到最大值。 据此确定用于模式分类的特征相似度阈值,分类准确性达到 100%。研究结果表明:基于频域特征波形模式匹配的故障诊断方法不需要繁琐的特征提取,也不需要复杂的分类器设计,仅仅通过简单的频域特征波形模式匹配、特征阈值比较即可实现多个复杂模式的准确分类。 此外,该方法适于解决小样本分类问题,而且分类效率高,自学习能力强,明显优于一些典型的模式识别诊断法,在构建在线的自动故障分类系统方面具有较大的应用潜力。

    Abstract:

    An approach for fault diagnosis based on pattern match of characteristic waveforms in frequency domain was proposed. It used the principle of global similarity on the characteristic waveforms of FFT-based amplitude spectrum of the vibration observation samples belonging to the identical pattern class. It was then applied to fault diagnosis of rolling element bearings, and compared with some typical diagnosis approaches based on pattern recognition. It was found that the cosine similarity, correlation similarity or mutual information similarity from pattern match of the characteristic waveforms in frequency domain reached the maximum respectively, when the test sample belonged to the identical pattern class as the training samples. According to this, the characteristic similarity threshold for pattern classification was determined, which contributed to 100% classification accuracy. The results show that the proposed approach for fault diagnosis needs neither sophisticated feature extraction nor complicated classifier design. It can accurately classify multiple complex patterns only by simple pattern match on characteristic waveforms in frequency domain and feature threshold comparison. In addition, it is suitable for solving the problem of small -sample classification with high classification efficiency and strong self -learning ability. It is obviously superior to some typical diagnosis approaches based on pattern recognition, andhas great application potential in constructing on-line automatic fault classification system.

    参考文献
    相似文献
    引证文献
引用本文

焦卫东,丁祥满,严天宇,闫莹莹.基于频域特征波形模式匹配的故障诊断方法研究[J].华东交通大学学报,2021,38(2):73-81.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-06-18
  • 出版日期: