多因素轨道交通客流量预测模型研究
作者:
作者单位:

作者简介:

黄海超(1996—),男,硕士研究生,研究方向为深度学习在智能交通领域的应用。E-mail:hhc123@hhu.edu.cn。

通讯作者:

中图分类号:

U293.5

基金项目:

国家自然科学基金项目(52078190);教育部人文社会科学研究规划基金(18YJAZH119)


Multi-factor Rail Transit Passenger Flow Prediction Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统预测模型只关注时间因素的不足,提出一种引入天气因素同时考虑日期属性的预测模型。 首先通过显著性检验确定天气因素与客流量的相关程度,再采用灰色关联度分析(GRA)计算各天气因素与客流量的非线性关联度,逐步筛选关联度低的天气因素。 每次筛选后利用双向长短期记忆(BiLSTM)神经网络进行预测,提出 GRA-BiLSTM 预测模型。 结果表明:将 GRA 值低于 0.6 的天气因素作为变量会降低预测精度, 逐步剔除关联度低的天气因素获得的 GRA-BiLSTM 相较于传统 LSTM,无论工作日还是非工作日,预测误差均显著降低,同时收敛速度与鲁棒性也优于传统机器学习。

    Abstract:

    Traditional prediction model only focuses on time factors. Aiming at that deficiency, a prediction model which introduces weather factor and considers date attribute was proposed. Firstly, the degree of correlation between weather factors and passenger flow was determined by significance test. Then, to gradually screen the low-relevant weather factors, grey relation analysis (GRA) was adopted to calculate the non-linear correlation between various weather factors and passenger flow. After each screening, the bi-directional LSTM neural network was used to forecast and the GRA-BiLSTM prediction model was proposed. The results show that taking weather factors with GRA value less than 0.6 as input will reduce the prediction accuracy. Compared with the traditional LSTM, the prediction error of GRA-BiLSTM,which is obtained by gradually eliminating the weather factors with low correlation, is significantly reduced on both work days, and non_work days and the convergence speed and robustness are better than the traditional machine learning as well.

    参考文献
    相似文献
    引证文献
引用本文

黄海超,陈景雅,王爽,王方伟.多因素轨道交通客流量预测模型研究[J].华东交通大学学报,2021,38(3):61-66.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-02
  • 出版日期: