基于改进的YOLOv3接触网鸟巢检测与识别
作者:
作者单位:

作者简介:

屈志坚(1978—),教授,博士,研究方向为智能监控理论与信息处理技术。E-mail:quzhijian781231@163.com。

通讯作者:

中图分类号:

TP317.4

基金项目:

江西省自然科学基金(20202BAB204023);国家自然科学基金项目(51867009);江西省重点研发计划项目(20192BBEL50006)


Detection and Recognition of Bird Nests in Overhead Catenary Systems Based on Improved YOLOv3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    接触网上鸟巢对铁路安全稳定运行存在严重威胁。 为检测和识别接触网上鸟巢以解决鸟巢对铁路运行造成的不良影响, 提出一种改进的 YOLOv3 算法。 首先对接触网鸟巢图像进行前期预处理,去噪等操作能够加强对鸟巢本质特征的提取,数据增强一定程度上避免神经网络的过拟合现象产生。 然后在网络结构中加入空间金字塔池化模块,对特征图进行不同尺度的池化操作再拼接,得到固定尺寸的输出,提取鸟巢多尺度特征。最后将衡量预测框与真实框距离的 GIoU 作为边界框损失函数,模型优化损失同时优化真实框与预测框的重叠度。 实验结果表明,该方法在接触网鸟巢检测的平均准确率达到 95.1%,在接触网鸟巢检测领域有较高的检测精度,能在复杂的接触网背景下较好的识别检测鸟巢。

    Abstract:

    Access to the bird nest is a serious threat to the safe and stable operation of overhead catenary system. An improved YOLOv3 algorithm was proposed to detect and identify the adverse effects of bird nests on railway operation. Firstly, the bird nest image of overhead catenary system is preprocessed in the early stage. The denoising and other operations can enhance the extraction of the essential features of the bird nest, and the data enhancement can avoid the over-fitting phenomenon of the neural network to a certain extent. The spatial pyramid pooling module is added into the network structure, and the feature map is pooled at different scales and then stitched together to get the output of fixed size, and the multi-scale features of the nest are extracted. Finally, the GIoU, which measures the distance between the prediction box and the real box, is used as the bounding box loss function, and the model optimizes the loss and the overlap degree between the real box and the prediction box. The experimental results show that the average accuracy of this method in the overhead contact netnest detection reaches 95.1%, which has a high detection accuracy in the overhead contact net nest detection field, and can better identify and detect the nest under the complex overhead contact net background.

    参考文献
    相似文献
    引证文献
引用本文

屈志坚,高天姿,池瑞,杨行.基于改进的YOLOv3接触网鸟巢检测与识别[J].华东交通大学学报,2021,38(4):72-80.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-09-13
  • 出版日期: