基于十字交叉域的Census立体匹配算法优化研究
作者:
作者单位:

作者简介:

宋培玉(1996—),女,华东交通大学理学院数学系硕士研究生,2019年获得河北北方学院学士学位。研究方向为计算机算法。E-mail:2192841180@qq.com。

通讯作者:

中图分类号:

TP391.41

基金项目:


Research on the Optimization of Census Stereo Matching Algorithm Based on Cross-Based Aggregation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    立体匹配算法在双目视觉中起着重要的作用。 基于非参数变换的 Census 立体匹配算法在近几年得到了广泛的应用,但 Census 立体匹配算法在求取视差图的过程中过度依赖中心像素点灰度值。 针对传统的 Census 算法过分依赖中心像素点造成的匹配精度不足,提出了一种基于十字交叉域的 Census 立体匹配算法。 该算法通过十字交叉域找到参考像素周围和其颜色相近的像素,利用十字交叉域内的像素对参考像素代价值进行优化,从而改善 Census 算法过度依赖中心像素所造成的误匹配, 提高视差图的精度。 实验结果表明十字交叉域的 Census 立体匹配算法对图像的视差精度有所提高,并且在确保匹配精度的条件下,该算法相比于四路径代价聚合的 Census 算法代价聚合时间大大降低。

    Abstract:

    Stereo matching algorithm plays an important role in binocular vision. Census stereo matching algorithm based on nonparametric transformation has been widely used in recent years, but in the process of obtaining disparity map, Census stereo matching algorithm relies too much on the gray value of the central pixel. In view of the insufficient matching accuracy caused by the traditional Census algorithm relying too much on the center pixel, this paper proposes a Census stereo matching algorithm based on cross based aggregation. In order to improve the accuracy of parallax image, this algorithm finds the pixels around the reference pixels which are similar to their colors through the cross based aggregation, and uses the pixels in the cross based aggregation to optimize the generation value of the reference pixels. The experimental results show that the cross-based Census stereo matching algorithm improves the parallax accuracy of the image, and under the condition of ensuring the matching accuracy, the cost aggregation time of the algorithm is greatly reduced compared with the four path cost aggregation Census algorithm.

    参考文献
    相似文献
    引证文献
引用本文

宋培玉,王森.基于十字交叉域的Census立体匹配算法优化研究[J].华东交通大学学报,2021,38(5):75-81.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-11-12
  • 出版日期: