基于深度学习的小样本绝缘子自爆检测研究
作者:
作者单位:

作者简介:

杨丰萍(1967—),女,教授,硕士生导师,研究方向为交通信息工程及控制、电力电子与电力传动等。Email:596871@qq.com

通讯作者:

中图分类号:

TM216

基金项目:

江西省教育厅科技项目(GJJ190295)


Research on Insulator Self-Explosion Detection with Small Sample Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对利用传统的图像识别方式对航拍绝缘子图像进行自爆故障诊断时效率较低,而目前的基于深度学习的检测方式又多通过级联网络进行,难以直接定位自爆缺陷块的问题,提出一种直接检测出自爆缺陷块的方法。 通过生成对抗网络扩充自爆样本数量,解决自爆样本不足的问题;此外,对 Faster R-CNN 检测器进行改进,通过特征融合策略增强其对小尺寸目标的定位能力。 结果表明:利用该方法直接检测绝缘子自爆缺陷时也能实现接近级联网络的良好效果,且大大降低了工作量,节约了训练时间,有可行性。

    Abstract:

    Aiming at the low efficiency of using traditional image recognition methods to diagnose self-explosion faults in aerial images of insulators, and the current image detection method based on deep learning is mostly carried out through the cascade network, which is difficult to directly locate the Self-explosive defect block, a method for directly detecting the self-explosive defect block is proposed. The number of defective samples is expanded through Generative Adversarial Networks to solve the problem of insufficient defective samples. In addition, the Faster R-CNN detector is improved to enhance its ability to locate small-scale targets through feature fusion strategy. Experiments show that when using this strategy to directly detect insulator Self-explosion defects, it can also achieve good results close to the cascade network, and greatly reduce the workload, save the training time, so it is feasible.

    参考文献
    相似文献
    引证文献
引用本文

杨丰萍,彭云帆,李远征.基于深度学习的小样本绝缘子自爆检测研究[J].华东交通大学学报,2022,39(2):110-117.
Yang Fengping, Peng Yunfan, Li Yuanzheng. Research on Insulator Self-Explosion Detection with Small Sample Based on Deep Learning[J]. JOURNAL OF EAST CHINA JIAOTONG UNIVERSTTY,2022,39(2):110-117

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-05-21
  • 出版日期:
关闭